ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機制和可變形卷積的雞只圖像實例分割提取
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFE0122200)


Instance Segmentation of Broiler Image Based on Attention Mechanism and Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高雞只個體輪廓分割提取的精度和準確度,,實現基于機器視覺技術的雞只行為,、健康、福利狀態(tài)監(jiān)測等精準畜牧業(yè)管理,,保證相關監(jiān)測技術及決策的可靠性,,針對疊層籠養(yǎng)環(huán)境下肉雞圖像的實例分割和輪廓提取問題,,提出一種優(yōu)化的基于Mask R-CNN框架的實例分割方法,構建了一種雞只圖像分割和輪廓提取網絡,,對雞群圖像進行分割,,從而實現雞只個體輪廓的提取。該網絡以注意力機制,、可變形卷積的41層深度殘差網絡(ResNet)和特征金字塔網絡(Feature pyramid networks, FPN)相融合為主干網絡,,提取圖像特征,并經區(qū)域生成網絡(Region proposal networks, RPN)提取感興趣區(qū)域(ROI),,最后通過頭部網絡完成雞只目標的分類,、分割和邊框回歸。雞只圖像分割試驗表明,,與Mask R-CNN網絡相比,,優(yōu)化后網絡模型精確率和精度均值分別從78.23%、84.48%提高到88.60%,、90.37%,,模型召回率為77.48%,可以實現雞只輪廓的像素級分割,。本研究可為雞只福利狀態(tài)和雞只健康狀況的實時監(jiān)測提供技術支撐,。

    Abstract:

    Segmentation and extraction of birds contour is the premise of precision livestock farming management, such as behavior, health, welfare status monitoring based on machine vision technology. The precision and accuracy of image segmentation directly affect the reliability of relevant monitoring technology and decision-making. An instance segmentation approach based on Mask R-CNN deep learning framework was proposed to solve broiler instance segmentation and contour extraction problems in stacked-cage henhouse. Furthermore, a broiler image segmentation and contour extraction network was constructed to segment broiler images and realize birds individual contour extraction. In this network, totally 41 layers deep residual network (ResNet) based on attention mechanism and deformable convolution was integrated with feature pyramid networks (FPN) as the backbone network to extract the image features, and regions of interest were extracted by region proposal networks. Finally, target classification, segmentation and box regression were realized through network heads. Broiler image segmentation experiment showed that compared with Mask R-CNN network, the average precision and mean accuracy of the optimized network were improved from 78.23% and 84.48% to 88.60% and 90.37%, respectively, and the recall rate of the model was 77.48%, which can realize the pixel level segmentation of chicken contour. The research result can provide technical support for the real-time monitoring of birds welfare and health status.

    參考文獻
    相似文獻
    引證文獻
引用本文

方鵬,郝宏運,李騰飛,王紅英.基于注意力機制和可變形卷積的雞只圖像實例分割提取[J].農業(yè)機械學報,2021,52(4):257-265. FANG Peng, HAO Hongyun, LI Tengfei, WANG Hongying. Instance Segmentation of Broiler Image Based on Attention Mechanism and Deformable Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):257-265.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10
文章二維碼