ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

農(nóng)業(yè)機(jī)械作業(yè)大數(shù)據(jù)清洗方法與試驗(yàn)優(yōu)化
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700205)


Experimental Optimization of Big Data Cleaning Method for Agricultural Machinery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)農(nóng)業(yè)機(jī)械大數(shù)據(jù)平臺(tái)中,,已有數(shù)據(jù)清洗算法不適用于大規(guī)模、多源異構(gòu),、高維度和強(qiáng)時(shí)空相關(guān)實(shí)時(shí)數(shù)據(jù)的問(wèn)題,分析了復(fù)雜田間環(huán)境下農(nóng)機(jī)作業(yè)數(shù)據(jù)異常來(lái)源及特征,研究了異常數(shù)據(jù)檢測(cè)及修正技術(shù),,提出一種基于滑動(dòng)窗口機(jī)制的農(nóng)機(jī)作業(yè)數(shù)據(jù)在線清洗方法,。該方法基于方差約束原則識(shí)別異常數(shù)據(jù),基于最小變動(dòng)原則生成候選修正數(shù)據(jù),,基于數(shù)據(jù)時(shí)間相關(guān)性通過(guò)AR,、ARX模型迭代優(yōu)化得到最終修復(fù)值,依托Flink分布式計(jì)算平臺(tái),,從而適應(yīng)農(nóng)機(jī)數(shù)據(jù)吞吐量大,、并發(fā)度高的特點(diǎn)?;谀呈∞r(nóng)機(jī)作業(yè)數(shù)據(jù)對(duì)算法進(jìn)行了有效性驗(yàn)證,,結(jié)果表明,在數(shù)據(jù)規(guī)模達(dá)到1×105條,、數(shù)據(jù)異常率為5%的情況下,,算法異常識(shí)別率達(dá)到0.94,且與已有清洗算法相比均方根誤差更小,?;贐ox-Behnken方法設(shè)計(jì)試驗(yàn),通過(guò)響應(yīng)面分析得到回歸模型,,分析算法參數(shù)對(duì)均方根誤差和運(yùn)行時(shí)間的影響,。基于二進(jìn)制編碼的混合遺傳算法對(duì)參數(shù)進(jìn)行優(yōu)化,,優(yōu)化后的參數(shù)組合可使算法均方根誤差達(dá)到0.16,、運(yùn)行時(shí)間達(dá)到0.13s。該數(shù)據(jù)清洗方法能夠?yàn)檗r(nóng)機(jī)大數(shù)據(jù)平臺(tái)的實(shí)時(shí)處理提供高質(zhì)量數(shù)據(jù)支撐,。

    Abstract:

    Data quality issues are the bottleneck hindering the development of agricultural machinery big data platforms. The existing data cleaning algorithms are not suitable for large-scale, multi-source heterogeneous, high-dimensional, and strong spatiotemporal correlation of agricultural machinery real-time streaming data. To this end, the source and characteristics of the abnormal data of agricultural machinery in complex environments were analyzed, the detection and correction technology of abnormal data was studied, and an online cleaning method for agricultural machinery operation data based on sliding window mechanism was proposed. The method determined abnormal data based on the principle of variance constraint; generated preliminary candidate data based on the principle of minimum change; based on the time correlation of data, the final repair value was obtained through AR and ARX model optimization; relying on the Flink distributed computing platform, it was suitable for large data throughput and high concurrency of agricultural machinery. The validity of the algorithm was verified based on the agricultural machinery operation data of a certain province. The results showed that when the amount of data reached 1×10 5 and the proportion of abnormal data was 5%, the abnormal recognition rate of the algorithm reached 0.94, and the root mean square error was smaller than that of the existing cleaning algorithm. The experiment was designed based on the Box-Behnken method, and the regression model was obtained through response surface analysis to study the influence of algorithm parameters on the root mean square error and time. The hybrid genetic algorithm based on binary coding optimized the parameters, and the optimized parameter combination can make the root mean square error of the algorithm reach 0.16 and the running time reach 0.13s. The data cleaning method can provide high-quality data support for the real-time processing of the agricultural machinery big data platform.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

苑嚴(yán)偉,徐玲,冀福華,郭大方,安颯,???農(nóng)業(yè)機(jī)械作業(yè)大數(shù)據(jù)清洗方法與試驗(yàn)優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(6):35-42. YUAN Yanwei, XU Ling, JI Fuhua, GUO Dafang, AN Sa, NIU Kang. Experimental Optimization of Big Data Cleaning Method for Agricultural Machinery[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):35-42.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二維碼