ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于近紅外光譜和機(jī)器學(xué)習(xí)的大豆種皮裂紋識(shí)別研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0101004)


Identification of Soybean Seed Coat Crack Based on Near Infrared Spectroscopy and Machine Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前大豆種皮裂紋檢測(cè)主要依靠人工,、檢測(cè)效率低,、誤差大的問題,,提出一種基于近紅外光譜技術(shù)和機(jī)器學(xué)習(xí)的大豆種皮裂紋自動(dòng)識(shí)別方法,。采用FT-NIR光譜儀采集150粒大豆樣品(裂紋大豆75粒,,正常大豆75粒)的近紅外光譜,,采用原始光譜、標(biāo)準(zhǔn)正態(tài)變量變換(Standard normal variate, SNV),、多元散射校正(Multiple scatter correction, MSC),、一階導(dǎo)數(shù)結(jié)合SG平滑、二階導(dǎo)數(shù)結(jié)合SG平滑等5種方法對(duì)獲得的光譜進(jìn)行預(yù)處理,,分別采用偏最小二乘判別分析法(Partial least squares discriminant analysis, PLS-DA),、k-近鄰法(k-nearest neighbor, KNN)、支持向量機(jī)法(Support vector machine, SVM),、隨機(jī)森林法(Random forest,,RF)、隨機(jī)梯度提升法(Stochastic gradient boosting, SGB),、極端梯度提升法(Extreme gradient boosting,,XGBoost)等6種機(jī)器學(xué)習(xí)方法建立了大豆種皮裂紋識(shí)別模型,研究了不同光譜預(yù)處理方法對(duì)6種機(jī)器學(xué)習(xí)方法分類效果的影響,,對(duì)比分析了不同建模方法的分類效果,。結(jié)果表明,光譜預(yù)處理方法對(duì)不同機(jī)器學(xué)習(xí)方法的分類效果差別較大,。在合適的光譜預(yù)處理?xiàng)l件下,,6種不同的機(jī)器學(xué)習(xí)算法的驗(yàn)證集準(zhǔn)確率均不低于80.00%。PLS-DA的分類效果最好,,驗(yàn)證集最優(yōu)準(zhǔn)確率達(dá)到90.00%,;XGBoost的分類效果次之,驗(yàn)證集最優(yōu)準(zhǔn)確率達(dá)到86.67%,,接下來依次是SVM,、KNN,、SGB和RF。利用近紅外光譜技術(shù)和機(jī)器學(xué)習(xí)方法識(shí)別大豆種皮裂紋是可行的,,在原始光譜條件下,,PLS-DA是大豆種皮裂紋識(shí)別的最佳方法。

    Abstract:

    At present, the detection of soybean seed coat crack mainly depends on visual inspection, which has low detection efficiency and large error, a method for automatic identification of soybean seed coat cracks based on near infrared spectroscopy and machine learning was proposed. The near infrared spectra of 150 soybean samples (75 cracked and 75 normal) were collected by FT-NIR spectrometer. The original spectra, standard normal variable (SNV), multiple scatter correction (MSC), the first derivative and the second derivative with SG smoothing were used to process the obtained spectra. Then partial least squares discriminant analysis (PLS-DA), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), stochastic gradient boosting (SGB) and extreme gradient boosting (XGBoost) were used to establish soybean seed coat crack identification models. The effects of different spectral preprocessing methods on the classification results of the six machine learning methods were compared and analyzed. Under the appropriate spectral preprocessing conditions, the accuracy of validation set of six different machine learning algorithms was not less than 80.00%. PLS-DA had the best classification result, and the optimal accuracy rate of validation set reached 90.00%; the next was XGBoost, the optimal accuracy rate of validation set reached 86.67%, followed by SVM, KNN, SGB and RF. The results showed that near infrared spectroscopy combined with machine learning was feasible to identify soybean seed coat cracks, and PLS-DA was the best method to identify soybean seed coat cracks under the original spectral conditions. The research result can provide a method for automatic identification of soybean seed coat cracks.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

汪六三,黃子良,王儒敬.基于近紅外光譜和機(jī)器學(xué)習(xí)的大豆種皮裂紋識(shí)別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(6):361-368. WANG Liusan, HUANG Ziliang, WANG Rujing. Identification of Soybean Seed Coat Crack Based on Near Infrared Spectroscopy and Machine Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(6):361-368.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-06-10
  • 出版日期: 2021-06-10
文章二維碼