ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于字典學習與SSD的不完整昆蟲圖像稻飛虱識別分類
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(61773216)


Recognition and Classification of Rice Planthopper with Incomplete Image Information Based on Dictionary Learning and SSD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決圖像采集過程中由于昆蟲圖像獲取不完整而導致整體稻飛虱識別精度低、速度慢的問題,,提出了一種基于字典學習和SSD的不完整稻飛虱圖像分類方法,。首先,使用自主研發(fā)的野外昆蟲圖像采集裝置采集稻飛虱圖像,,構建小型圖像集,。然后,將采集的稻田昆蟲圖像進行閾值分割,,得到單一稻田昆蟲圖像,;對單一昆蟲圖像進行分塊處理,,得到帶有背景信息和特征信息的混合子圖像塊集;使用子圖像塊作為字典原子來構建過完備字典,,并對其進行初始化和優(yōu)化更新,;將更新后的過完備字典作為訓練集輸入SSD算法中進行訓練,得到訓練模型,。最后,,將采集的包含不完整稻田昆蟲的圖像在訓練集模型上進行測試,并將測試結果與BPNN(Back propagation neural network),、SVM (Support vector machines),、稀疏表示等方法進行對比。試驗結果表明,,所提出的基于字典學習和SSD的稻飛虱識別與分類方法可以對不完整的昆蟲圖像進行準確快速的識別分類,,其中,分類速度可達22f/s,,識別精度可達89.3%,對稻飛虱的監(jiān)督,、預警和防治提供了有效的信息與技術支持,。

    Abstract:

    In order to solve the problem of low accuracy and slow speed of identification of rice planthopper caused by incomplete insect image in image acquisition process, a rice planthopper identification and classification method with incomplete insect images based on dictionary learning and single shot multibox detector (SSD) was proposed. Firstly, the field insect image acquisition device was used to acquire rice planthopper images and a small image set was built by these images. Then, single-inspect images were obtained by thresholding of the collected images of rice insects. Single-insect images were divided into blocks to obtain a mixed sub-image blocks with background information and feature information. The sub-image blocks were used as dictionary atoms to construct an over-complete dictionary, and this initial dictionary was optimized and updated immediately. The updated over-complete dictionary was trained as the training set of the SSD algorithm to obtain the training model. Finally, the collected incomplete insect images were tested on the obtained training models, and results were compared with back propagation neural network (BPNN), support vector machines (SVM) and sparse representation. Experimental results showed that the research on the identification and classification method with incomplete images based on dictionary learning and SSD can identify and classify rice planthopper accurately and quickly. Classification speed was 22f/s, the recognition accuracy was 89.3%. Hence, the method proposed can provide effective information and technical support for the supervision, early warning and control of rice planthoppers.

    參考文獻
    相似文獻
    引證文獻
引用本文

林相澤,張俊媛,徐嘯,朱賽華,劉德營.基于字典學習與SSD的不完整昆蟲圖像稻飛虱識別分類[J].農業(yè)機械學報,2021,52(9):165-171. LIN Xiangze, ZHANG Junyuan, XU Xiao, ZHU Saihua, LIU Deying. Recognition and Classification of Rice Planthopper with Incomplete Image Information Based on Dictionary Learning and SSD[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):165-171.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼