ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多尺度感知的高密度豬只計(jì)數(shù)網(wǎng)絡(luò)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0500506)、中央高校自主創(chuàng)新基金項(xiàng)目(2662018JC003,、2662018JC010,、2662017JC028)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-35)


High-density Pig Counting Net Based on Multi-scale Aware
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    豬只盤(pán)點(diǎn)是生豬規(guī)?;B(yǎng)殖和管理中的重要環(huán)節(jié),人工計(jì)數(shù)方法費(fèi)時(shí),、費(fèi)力,,在大數(shù)據(jù)量的豬只盤(pán)點(diǎn)中容易出錯(cuò)。本文使用多尺度感知網(wǎng)絡(luò)對(duì)高密度豬群圖像中的豬只進(jìn)行計(jì)數(shù),。通過(guò)對(duì)人群計(jì)數(shù)網(wǎng)絡(luò)CSRNet的改進(jìn),,得到豬只計(jì)數(shù)網(wǎng)絡(luò)(Pig counting net, PCN),PCN采用VGG16作為前端網(wǎng)絡(luò)提取特征,,中間層采用空間金字塔(Spatial pyramid)結(jié)構(gòu)對(duì)圖像中的多尺度信息進(jìn)行提取與融合,,后端網(wǎng)絡(luò)采用改進(jìn)的膨脹卷積網(wǎng)絡(luò)。PCN增加了多尺度感知結(jié)構(gòu),、擴(kuò)大了后端網(wǎng)絡(luò)感受野,,通過(guò)感知多尺度特征得到預(yù)測(cè)密度圖,預(yù)測(cè)密度圖反映了豬只空間分布,,通過(guò)對(duì)密度圖積分實(shí)現(xiàn)了豬只數(shù)量的估計(jì),。結(jié)果表明,在平均豬只數(shù)為 40.71的測(cè)試集圖像上,,PCN的計(jì)數(shù)準(zhǔn)確率優(yōu)于人群計(jì)數(shù)網(wǎng)絡(luò) MCNN、CSRNet和改進(jìn)Counting CNN 的豬只計(jì)數(shù)網(wǎng)絡(luò),,MAE和RMSE 分別為1.74和 2.28,,表現(xiàn)出較高的準(zhǔn)確性和魯棒性;單幅圖像平均識(shí)別時(shí)間為0.108s,,滿足實(shí)時(shí)處理要求,。

    Abstract:

    Pig inventory is an important part of large-scale breeding and management of live pigs. Manual counting methods are more time-consuming and laborious, especially in pig inventory with large amounts of data. How to count high-density pig herd images with machine vision is still a difficult problem to be solved urgently. A multi-scale aware counting network was used to count pigs in high-density pig herd images. Based on the crowd counting network CSRNet, the pig counting network of pig counting net(PCN)was proposed. VGG16 was used as the front-end network to extract features, the spatial pyramid structure was used, and this structure can extract and fusion multi-scale information in the image, the back-end network used an improved dilated convolutional network. PCN added a multi-scale aware structure, expanded the back-end network receptive field, and can obtain a predicted density map by sensing multi-scale features, the predicted density map reflectedthe spatial distribution of pigs, then by integrating the density map, the number of pigs can be accurately calculated.The results showed that on the test set image with an average number of pigs of 40.71, the accuracy of PCN was better than that of the crowd counting net MCNN, CSRNet and the pig counting net that modified Counting CNN, the mean absolute error (MAE) and the root mean square error (RMSE) were 1.74 and 2.28, respectively,the lower error showed that PCN had better accuracy and robustness.The average recognition time of a single image of the final model was 0.108s, which met the real-time processing requirements of the algorithm.The method provided a research idea for the automatic inventory of high-density group raising pigs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高云,李靜,余梅,李小平,余慧祥,譚忠.基于多尺度感知的高密度豬只計(jì)數(shù)網(wǎng)絡(luò)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):172-178. GAO Yun, LI Jing, YU Mei, LI Xiaoping, YU Huixiang, TAN Zhong. High-density Pig Counting Net Based on Multi-scale Aware[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):172-178.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼