ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)CenterNet的玉米雄蕊無人機(jī)遙感圖像識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFCO403302)和楊凌示范區(qū)科技計(jì)劃項(xiàng)目(2020-46)


Improved CenterNet Based Maize Tassel Recognition for UAV Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為準(zhǔn)確識別抽雄期玉米雄蕊實(shí)現(xiàn)監(jiān)測玉米長勢、植株計(jì)數(shù)和估產(chǎn),,基于無錨框的CenterNet目標(biāo)檢測模型,,通過分析玉米雄蕊的尺寸分布,并在特征提取網(wǎng)絡(luò)中添加位置坐標(biāo),,從而提出一種改進(jìn)的玉米雄蕊識別模型,。針對雄蕊尺寸較小的特點(diǎn),去除CenterNet網(wǎng)絡(luò)中對圖像尺度縮小的特征提取模塊,,在降低模型參數(shù)的同時(shí),,提高檢測速度。在CenterNet特征提取模型中添加位置信息,,提高定位精度,,降低雄蕊漏檢率。試驗(yàn)結(jié)果表明,,與有錨框的YOLO v4,、Faster R-CNN模型相比,改進(jìn)的CenterNet雄蕊檢測模型對無人機(jī)遙感影像的玉米雄蕊識別精度達(dá)到92.4%,,分別高于Faster R-CNN和YOLO v4模型26.22,、3.42個(gè)百分點(diǎn);檢測速度為36f/s,,分別比Faster R-CNN和YOLO v4模型高32,、23f/s。本文方法能夠準(zhǔn)確地檢測無人機(jī)遙感圖像中尺寸較小的玉米雄蕊,,為玉米抽雄期的農(nóng)情監(jiān)測提供參考,。

    Abstract:

    In order to accurately identify the tassels of maize at tasseling stage, the growth, plant count and yield of maize should be monitored, based on the CenterNet object detection model without anchor frame, an improved maize tassel recognition model was proposed by analyzing the size distribution of maize tassels and adding position coordinates in the feature extraction network. According to the small tassel size, the feature extraction module for image scale reduction in CenterNet network was removed to reduce the model parameters and improve the detection speed. The location information was added to the CenterNet feature extraction model to improve the positioning accuracy and reduce the rate of tassel missed detection. The experimental results showed that, compared with YOLO v4 and Faster R-CNN with anchor frame, the improved CenterNet model achieved 92.4% accuracy in identifying maize tassels from UAV remote sensing images, which were 26.22 and 3.42 percentage points higher than that of Faster R-CNN and YOLO v4 models, respectively. The detection speed was 36f/s, 32f/s and 23f/s higher than that of the Faster R-CNN and YOLO v4 models, respectively. The method proposed can accurately detect the smaller tassels in the UAV remote sensing image, and provide a reference for the monitoring of agricultural situation in the tasseling stage of maize.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊蜀秦,劉江川,徐可可,桑雪,寧紀(jì)鋒,張智韜.基于改進(jìn)CenterNet的玉米雄蕊無人機(jī)遙感圖像識別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):206-212. YANG Shuqin, LIU Jiangchuan, XU Keke, SANG Xue, NING Jifeng, ZHANG Zhitao. Improved CenterNet Based Maize Tassel Recognition for UAV Remote Sensing Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):206-212.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼