ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于注意力機(jī)制和多尺度殘差網(wǎng)絡(luò)的農(nóng)作物病害識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃項(xiàng)目(2019B020216001),、國(guó)家自然科學(xué)基金項(xiàng)目(41771469)和安徽省高等學(xué)校自然科學(xué)研究重點(diǎn)項(xiàng)目 (KJ2019A0030)


Crop Disease Recognition Based on Attention Mechanism and Multi-scale Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)農(nóng)作物病害識(shí)別方法依靠人工提取特征,,步驟復(fù)雜且低效,難以實(shí)現(xiàn)在田間環(huán)境下識(shí)別的問題,,提出一種多尺度卷積結(jié)構(gòu)與注意力機(jī)制結(jié)合的農(nóng)作物病害識(shí)別模型,。該研究在殘差網(wǎng)絡(luò)(ResNet18)的基礎(chǔ)上進(jìn)行改進(jìn),引入Inception模塊,,利用其多尺度卷積核結(jié)構(gòu)對(duì)不同尺度的病害特征進(jìn)行提取,,提高了特征的豐富度。在殘差結(jié)構(gòu)的基礎(chǔ)上加入注意力機(jī)制SE-Net(Squeeze-and-excitation networks),,增強(qiáng)了有用特征的權(quán)重,,減弱了噪聲等無(wú)用特征的影響,進(jìn)一步提高特征提取能力并且增強(qiáng)了模型的魯棒性,。實(shí)驗(yàn)結(jié)果表明,,改進(jìn)后的多尺度注意力殘差網(wǎng)絡(luò)模型(Multi-Scale-SE-ResNet18)在復(fù)雜田間環(huán)境收集的8種農(nóng)作物病害數(shù)據(jù)集上的平均識(shí)別準(zhǔn)確率達(dá)到95.62%,相較于原ResNet18模型準(zhǔn)確率提高10.92個(gè)百分點(diǎn),,模型占用內(nèi)存容量?jī)H為44.2MB,。改進(jìn)后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,,并且較好地平衡了模型的識(shí)別精度與模型復(fù)雜度,,可為田間環(huán)境下農(nóng)作物病害識(shí)別提供參考。

    Abstract:

    Aiming at the problem that traditional crop disease recognition methods rely on manual extraction of features, the steps are complex and inefficient, and it is difficult to recognize in the field environment, a crop disease recognition model combining multi-scale convolution structure and attention mechanism was proposed. This research improved on the basis of residual network (ResNet18), introduced the Inception module, and its multi-scale convolution kernel structure was used to extract disease features at different scales, and the richness of features was improved. On the basis of the residual structure, the attention mechanism squeeze-and-excitation networks (SE-Net) was added to enhance the weight of useful features, weaken the influence of useless features such as noise, and further improve the feature extraction ability and enhance the robustness of the model. The experimental results showed that the improved multi-scale attention residual network model (Multi-Scale-SE-ResNet18) had an average recognition accuracy of 95.62% on the eight crop disease data sets collected in a complex field environment, compared with the original accuracy of the ResNet18 model, it was increased by 10.92 percentage points. The model size was only 44.2MB. The improved Multi-Scale-SE-ResNet18 had better feature extraction capabilities, and it can extract more disease feature information, and better balance the recognition accuracy of the model with the model complexity, which can be used for crop diseases identification in the field environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

黃林生,羅耀武,楊小冬,楊貴軍,王道勇.基于注意力機(jī)制和多尺度殘差網(wǎng)絡(luò)的農(nóng)作物病害識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(10):264-271. HUANG Linsheng, LUO Yaowu, YANG Xiaodong, YANG Guijun, WANG Daoyong. Crop Disease Recognition Based on Attention Mechanism and Multi-scale Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):264-271.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-15
  • 出版日期:
文章二維碼