ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于組合色彩特征的蘋果樹葉片各生長期氮含量預(yù)測
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0201104)和國家蘋果產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-27)


Prediction of Nitrogen Content in Apple Leaves in Each Growth Period Based on Combined Color Characteristics
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為精準(zhǔn)預(yù)測開花期、幼果期和果實(shí)膨大期蘋果樹葉片的氮含量,,提出一種基于組合色彩特征的蘋果樹葉片氮含量預(yù)測模型,。首先,獲取蘋果樹葉片圖像并提取R,、G,、B單色分量及14種色彩組合參數(shù)共計(jì)17種色彩特征,通過主成分分析提取不同時(shí)期蘋果樹葉片氮含量關(guān)鍵影響因子,,消除原始變量之間的相關(guān)性,,降低模型輸入向量維度;其次,,對建立的PCA-SVM,、PCA-BP、PCA-ELM預(yù)測模型在不同時(shí)期對蘋果樹葉片氮含量預(yù)測效果與精度進(jìn)行對比,,得到不同時(shí)期最佳的預(yù)測模型,;最后,利用最佳預(yù)測模型對不同時(shí)期蘋果樹葉片氮含量進(jìn)行預(yù)測,,并通過自適應(yīng)遺傳算法對最佳預(yù)測模型參數(shù)進(jìn)行優(yōu)化,。試驗(yàn)結(jié)果表明:在不同生長時(shí)期,PCA-SVM模型的預(yù)測精度均高于PCA-BP,、PCA-ELM模型,;優(yōu)化后PCA-SVM預(yù)測模型在開花期、幼果期和果實(shí)膨大期的平均絕對誤差分別為0.640,、0.558,、0.544g/kg,平均絕對百分誤差分別為0.057、0.050,、0.064g/kg,,均方根誤差分別為0.800、0.747,、0.737g/kg,,優(yōu)于優(yōu)化前預(yù)測模型。該模型具有良好的預(yù)測性能和泛化能力,,可以為果園精準(zhǔn)施肥管理,、提升果品品質(zhì)、避免資源浪費(fèi)和環(huán)境污染提供理論依據(jù),。

    Abstract:

    In order to accurately predict the nitrogen content in different scales of apple leaves at flowering, young fruit and fruit expansion periods, a combined color characteristics based prediction model of apple leaf nitrogen content was proposed. Firstly, the image of apple leaves was obtained and 17 color features, including R,G,B monochromatic components and 14 color combination parameters were extracted, and the key influencing factors of nitrogen content of apple leaves in different periods were extracted by principal component analysis to eliminate the correlation between the original variables and reduce the input vector dimension of the model. Secondly, the PCA-SVM, PCA-BP and PCA-ELM prediction models were established in different periods, the prediction effect and accuracy of apple leaf nitrogen content were compared, and the best prediction model in different periods was obtained. Finally, the best prediction model was used to predict the nitrogen content of apple leaves in different periods, and the parameters of the best prediction model were optimized by adaptive genetic algorithm. The results showed that the prediction accuracy of PCA-SVM model was higher than that of PCA-BP and PCA-ELM model in different growth periods; the mean absolute error of PCA-SVM prediction model in flowering period, young fruit period and fruit expansion period was 0.640 g/kg, 0.558 g/kg and 0.544 g/kg, and mean absolute percentage error was 0.057 g/kg, 0.050 g/kg and 0.064 g/kg, and root mean square error was 0.800g/kg, 0.747 g/kg and 0.737 g/kg, which was better than that of the prediction model before optimization. The model had good prediction performance and generalization ability, which can provide theoretical basis for orchard precision fertilization management, improving fruit quality, avoiding resource waste and environmental pollution.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王金星,劉雪梅,劉雙喜,權(quán)澤堃,徐春保,江浩.基于組合色彩特征的蘋果樹葉片各生長期氮含量預(yù)測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(10):272-281,,376. WANG Jinxing, LIU Xuemei, LIU Shuangxi, QUAN Zekun, XU Chunbao, JIANG Hao. Prediction of Nitrogen Content in Apple Leaves in Each Growth Period Based on Combined Color Characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):272-281,376.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-31
  • 出版日期:
文章二維碼