ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于知識蒸餾的疊層籠養(yǎng)蛋雞行為識別模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2017YFE0122200)


Behavior Recognition Model of Stacked-cage Layers Based on Knowledge Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)疊層籠養(yǎng)環(huán)境下蛋雞行為的識別檢測,,構建了一種基于多教師模型融合的知識蒸餾蛋雞行為識別模型,,用多個教師模型融合指導學生網絡訓練,。對基于Faster R-CNN框架的蛋雞行為識別模型的特征提取網絡進行知識蒸餾,,以結構較復雜的ResNeXt,、Res2Net和HRNet網絡為教師網絡,,以結構較簡單的ResNet 34網絡為學生網絡,通過知識蒸餾訓練蛋雞行為識別模型,。試驗結果表明,,特征提取網絡經過知識蒸餾后,蛋雞行為識別模型性能得到顯著提升,,與特征提取網絡未經過知識蒸餾的識別模型相比,,模型準確率、平均精確度,、召回率分別從93.6%,、78.7%、86.2%提升至96.6%、89.9%,、94.6%,;學生模型經過知識蒸餾后基本達到了教師模型的性能水平,而模型參數量和模型計算量比教師模型降低了32%和33%,,模型推理時間降低了66%,。本研究提出的知識蒸餾模型通過較簡單的網絡結構獲得了高精度的識別模型,為蛋雞行為識別模型在小型嵌入式設備的部署提供了可能,。

    Abstract:

    Animal behavior is closely related to animal welfare and health. It is an important means to evaluate animal welfare and health status through the identification and detection of animal behavior. In order to achieve the recognition and detection of layer behavior in the stackedcage system, a knowledge distillation layer behavior recognition model based on ensemble of multi-teacher model was constructed, and the student network training was guided by multiple teacher model. The knowledge distillation method was applied to the feature extraction network of layer behavior recognition model based on Faster R-CNN framework. Taking ResNeXt, Res2Net and HRNet networks as teacher networks and ResNet 34 networks as student networks, the layer behavior recognition model was trained through knowledge distillation method. The experimental results showed that the performance of layer behavior recognition model was significantly improved. Compared with the recognition model without knowledge distillation, the accuracy, average precision and recall of the model were improved from 93.6%, 78.7% and 86.2% to 96.6%, 89.9% and 94.6%, respectively. After knowledge distillation, the student model basically reached the performance level of the teacher model, while the number of parameters and computation were reduced 32% and 33% than the teacher model, and the inference time of the model was reduced by 66%. The knowledge distillation model proposed obtained a highprecision recognition model through a relatively simple network structure, which provided the possibility for the deployment of layer behavior recognition model in edge embedded devices.

    參考文獻
    相似文獻
    引證文獻
引用本文

方鵬,郝宏運,王紅英.基于知識蒸餾的疊層籠養(yǎng)蛋雞行為識別模型研究[J].農業(yè)機械學報,2021,52(10):300-306. FANG Peng, HAO Hongyun, WANG Hongying. Behavior Recognition Model of Stacked-cage Layers Based on Knowledge Distillation[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):300-306.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-05-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-20
  • 出版日期:
文章二維碼