ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于三軸加速度傳感器的放牧羊只牧食行為研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31860666)和內蒙古自治區(qū)自然科學基金項目(2017MS0606,、2020BS06010)


Grazing Behavior of Herding Sheep Based on Three-axis Acceleration Sensor
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    內蒙古自治區(qū)草地資源豐富,,養(yǎng)羊業(yè)為自治區(qū)的主要畜牧業(yè),通過對放牧羊只牧食行為的識別并結合GPS監(jiān)測其牧食路徑,,可為估測放牧區(qū)域采食量分布,、放牧規(guī)劃和草畜平衡的研究提供理論依據(jù)。本文采用三軸加速度傳感器,,設計了放牧羊只牧食行為數(shù)據(jù)無線采集系統(tǒng),,自動采集羊只牧食的三軸加速度數(shù)據(jù),并建立羊只牧食行為識別的BP神經(jīng)網(wǎng)絡模型,、全連接深度神經(jīng)網(wǎng)絡模型和卷積神經(jīng)網(wǎng)絡模型,,實現(xiàn)對羊只采食、咀嚼,、反芻3種牧食行為的分類識別,。在內蒙古自治區(qū)四子王旗白音朝克圖鎮(zhèn)半荒漠化草場的試驗結果表明,BP神經(jīng)網(wǎng)絡模型,、全連接深度神經(jīng)網(wǎng)絡模型和卷積神經(jīng)網(wǎng)絡模型對羊只牧食行為的平均識別率分別為83.1%,、89.4%和93.8%,其中卷積神經(jīng)網(wǎng)絡模型的識別精度最高,,能夠滿足羊只牧食行為分類識別的要求,。

    Abstract:

    Inner Mongolia is rich in grassland resources, and sheep industry is the main animal husbandry in the autonomous region. The intelligent identification of sheep grazing behaviors combined with GPS monitoring of grazing path can provide theoretical basis for estimating of feed intake distribution in grazing area, grazing planning and grassland livestock balance. Threeaxis acceleration sensors were used to design a wireless data acquisition system for grazing behaviors of herding sheep, and the system can automatically collect the three-axis acceleration data of grazing behaviors. BP neural network model, full connection deep neural network model and convolution neural network model were established to realize the classification and recognition of feeding, chewing and ruminating behaviors of herding sheep respectively. The experiments were carried out in a semi-desertification grassland in Inner Mongolia, and the natural grazing Mongolian sheep were selected as test objects. The results showed that the average recognition rates of BP neural network model, full connection deep neural network model and convolution neural network model were 83.1%, 89.4% and 93.8%, respectively, and the convolution neural network model had the highest recognition accuracy, and the adaptability and stability of the network model was strong, which can meet the requirements of classification and recognition of sheep grazing behavior. The feeding path of sheep can be monitored by GPS. The research result can provide theoretical basis for ranch managers to formulate grazing system and improve grazing level.

    參考文獻
    相似文獻
    引證文獻
引用本文

張春慧,宣傳忠,于文波,郝敏,劉飛龍.基于三軸加速度傳感器的放牧羊只牧食行為研究[J].農業(yè)機械學報,2021,52(10):307-313. ZHANG Chunhui, XUAN Chuanzhong, YU Wenbo, HAO Min, LIU Feilong. Grazing Behavior of Herding Sheep Based on Three-axis Acceleration Sensor[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):307-313.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-10-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-04
  • 出版日期:
文章二維碼