ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于BERT_Stacked LSTM的農(nóng)業(yè)病蟲害問句分類方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300710)


Question Classification Method of Agricultural Diseases and Pests Based on BERT_Stacked LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決農(nóng)業(yè)病蟲害問句分類過程中存在公開數(shù)據(jù)集較少,、文本較短,、特征稀疏、隱含語義信息較難學(xué)習(xí)等問題,,以火爆農(nóng)資招商網(wǎng)為數(shù)據(jù)源,,構(gòu)建了用于農(nóng)業(yè)病蟲害問句分類的數(shù)據(jù)集,提出了一種用于農(nóng)業(yè)病蟲害問句分類的深度學(xué)習(xí)模型BERT_Stacked LSTM,。首先,,BERT部分獲取各個(gè)問句的字符級語義信息,生成了包含句子級特征信息的隱藏向量,。然后,,使用堆疊長短期記憶網(wǎng)絡(luò)(Stacked LSTM)學(xué)習(xí)到隱藏的復(fù)雜語義信息。實(shí)驗(yàn)結(jié)果表明,與其他對比模型相比,,本文模型對農(nóng)業(yè)病蟲害問句分類更具優(yōu)勢,,F(xiàn)1值達(dá)到了95.76%,并在公開通用領(lǐng)域數(shù)據(jù)集上進(jìn)行了測試,,F(xiàn)1值達(dá)到了98.44%,,表明了模型具有較好的的泛化性。

    Abstract:

    In order to solve the thorny problems in the process of classification of agricultural diseases and insect pests questions, such as fewer public data sets, shorter texts and sparse features, and difficult to learn implicit semantic information, using the hot agricultural investment network as the data source, a data set for the classification of agricultural pests and diseases was constructed, and a deep learning model BERT_Stacked LSTM for the classification of agricultural pests and diseases was proposed. Firstly, the BERT obtained the character-level semantic information of each question, and generated a hidden vector containing sentence-level feature information. Then, stacked long short-term memory network (Stacked LSTM) structure was used to learn the hidden complex semantic information. Experimental results showed the effectiveness of the proposed model. Compared with other comparative models, the model proposed had more advantages in classifying agricultural diseases and insect pests questions. The F1 score reached 95.76%, and it was widely used in public. Tested on the domain data set, the F1 score reached 98.44%, indicating that the generalization of the model was also very good.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李 林,刁 磊,唐 詹,柏 召,周 晗,郭旭超.基于BERT_Stacked LSTM的農(nóng)業(yè)病蟲害問句分類方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):172-177. LI Lin, DIAO Lei, TANG Zhan, BAI Zhao, ZHOU Han, GUO Xuchao. Question Classification Method of Agricultural Diseases and Pests Based on BERT_Stacked LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):172-177.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼