ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于DRN-Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測(cè)模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD0900201)


Multi-target Fish Detection Model Based on DRN-Faster R-CNN in Complex Background
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)現(xiàn)有多目標(biāo)魚體檢測(cè)大多針對(duì)受控環(huán)境進(jìn)行,,泛化能力有限的問(wèn)題,,提出了一種簡(jiǎn)單,、有效的復(fù)雜背景下多目標(biāo)魚體檢測(cè)模型,。通過(guò)遷移學(xué)習(xí)構(gòu)建基于DRN的特征提取方法,,對(duì)原始圖像進(jìn)行特征提取,,結(jié)合RPN進(jìn)一步生成候選檢測(cè)框,;構(gòu)建基于Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測(cè)模型,。在ImageNet2012數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明:該模型對(duì)復(fù)雜背景下金魚的檢測(cè)平均精度達(dá)到89.5%,遠(yuǎn)高于R-CNN+AlexNet模型,、Faster R-CNN+VGG16模型和Faster R-CNN+ResNet101的檢測(cè)精度,,表明該模型可以高效精確地實(shí)現(xiàn)復(fù)雜背景下的多目標(biāo)魚體檢測(cè)。

    Abstract:

    Target detection is the key link of fish tracking, behavior recognition and abnormal behavior detection of fish body. Therefore, fish detection has important practical significance. Due to the low imaging quality of underwater surveillance video, the complicated underwater environment, and the high visual diversity of fish bodies, multi-target fish detection in complex background is still a very challenging problem. In order to solve the problem that the existing multi-target fish detection is mostly carried out in a controlled environment and the generalization ability is limited, a simple and effective multi-target fish detection model in complex background was proposed. The feature extraction method based on DRN was constructed by transfer learning. The features were extracted from the original image, and the candidate detection frame was further generated by combining RPN. A multi-target fish detection model in complex background was constructed based on Faster R-CNN. The experimental results on the ImageNet2012 data set showed that the detection accuracy of this model for goldfish in complex background reached 89.5%, which was much higher than the detection accuracy of the R-CNN+AlexNet model, Faster R-CNN+VGG16 model and Faster R-CNN+ ResNet101 model in this data set, indicating that this model can effectively and accurately realize the detection of multi-target fish in complex background.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫龍清,孫希蓓,吳雨寒,羅 冰.基于DRN-Faster R-CNN的復(fù)雜背景多目標(biāo)魚體檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):245-251,,315. SUN Longqing, SUN Xibei, WU Yuhan, LUO Bing. Multi-target Fish Detection Model Based on DRN-Faster R-CNN in Complex Background[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):245-251,,315.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼