ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于樹莓派的農(nóng)田表土層土壤容重檢測(cè)系統(tǒng)研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金青年基金項(xiàng)目(31801265)


Soil Bulk Density Detection System of Farmland Topsoil Based on Raspberry Pi
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    設(shè)計(jì)了一種基于樹莓派的表層土壤容重檢測(cè)系統(tǒng),利用易于獲取的土壤表面圖像特征對(duì)表層土壤容重進(jìn)行預(yù)測(cè),。提取圖像的Tamura紋理特征以及圖像的分形維數(shù)特征,。經(jīng)過驗(yàn)證,Tamura 紋理特征中的粗糙度,、對(duì)比度,、方向度以及圖像分形維數(shù)特征與土壤容重的相關(guān)性較高,相關(guān)系數(shù)分別為-0.754,、-0.799,、-0.806、-0.849,,因而選用這4個(gè)參數(shù)作為預(yù)測(cè)模型輸入,。分別采用SVM回歸模型和GRNN回歸模型以及基于SVM,、GRNN的Bagging集成模型對(duì)土壤容重進(jìn)行預(yù)測(cè)?;赟VM,、GRNN的Bagging集成模型預(yù)測(cè)結(jié)果同環(huán)刀法得到的結(jié)果進(jìn)行相關(guān)性分析,決定系數(shù)R 2達(dá)到0.8641,,預(yù)測(cè)結(jié)果的平均絕對(duì)誤差(MAE)達(dá)到了0.0316g/cm 3,,相對(duì)單一SVM回歸模型和單一GRNN回歸模型具有更好的預(yù)測(cè)結(jié)果?;跇漭傻霓r(nóng)田表土層土壤容重檢測(cè)系統(tǒng)的田間實(shí)時(shí)測(cè)量結(jié)果顯示測(cè)量的平均絕對(duì)誤差(MAE)為0.0412g/cm 3,,滿足了田間精準(zhǔn)、快速檢測(cè)的要求,。

    Abstract:

    The soil bulk density of the topsoil layer is an important parameter of farmland soil, and it is of great significance to accurately measure and evaluate it. A vehicle-mounted surface soil bulk density detection system based on Raspberry Pi was designed. The system took soil surface images and predicted the surface soil bulk density using easily-obtained soil surface image features. Extracted the Tamura texture feature of the image and the fractal dimension feature of the image. After verification, the roughness, contrast, directionality, and fractal dimension features were highly correlated with soil bulk density, and the correlation coefficients were -0.754, -0.799, -0.806, and -0.849. So these four parameters were selected as the input of the prediction model. SVM regression model, GRNN regression model and Bagging integration model based on SVM and GRNN were used to predict soil bulk density. Based on the correlation analysis between the prediction results of the Bagging integration model of SVM and GRNN and the results obtained by the ring knife method, R 2 reached 0.8641, and the average absolute error (MAE) of the prediction results reached 0.0316g/cm 3, and it had better prediction results than a single SVM regression model and a single GRNN regression model. The field test was carried out using the soil bulk density detection system of farmland topsoil based on Raspberry Pi. And the results showed that the average absolute error (MAE) of the measurement was 0.0412g/cm 3, which was in line with expectations and met the requirements of accurate and rapid detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李民贊,任新建,楊 瑋,孟 超,王煒超.基于樹莓派的農(nóng)田表土層土壤容重檢測(cè)系統(tǒng)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(S0):329-335,,376. LI Minzan, REN Xinjian, YANG Wei, MENG Chao, WANG Weichao. Soil Bulk Density Detection System of Farmland Topsoil Based on Raspberry Pi[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(S0):329-335,376.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-10
  • 出版日期: 2021-12-10
文章二維碼