ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合多源時空數(shù)據(jù)的冬小麥產(chǎn)量預測模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0300702),、河南省重大科技專項(171100110600)和河南省農(nóng)業(yè)科學院創(chuàng)新團隊項目(2021TD11)


Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為提高大尺度冬小麥產(chǎn)量預測精度,,以2005—2019年河南省遙感數(shù)據(jù)、氣象數(shù)據(jù),、土壤含水率等多源時空數(shù)據(jù)為特征變量,,分析其與小麥單產(chǎn)的相關性,并基于隨機森林算法對特征變量進行了重要性分析,,構(gòu)建了融合多源時空數(shù)據(jù)的冬小麥產(chǎn)量預測模型,。結(jié)果表明:增強型植被指數(shù)(Enhanced vegetation index,EVI),、日光誘導葉綠素熒光(Solarinduced chlorophyll fluorescence,,SIF)與高程為小麥產(chǎn)量預測的重要因子,與小麥產(chǎn)量呈高度正相關,,對小麥產(chǎn)量預測的重要性指標均超過0.45,,遠大于土壤含水率、降水量,、最高溫度,、最低溫度等因子;基于隨機森林算法構(gòu)建的小麥不同生長階段產(chǎn)量預測模型中,,以10月—次年5月和10月—次年4月為特征變量的產(chǎn)量預測模型精度較高,,R2分別為0.85和0.84,RMSE分別為821.55,、832.01kg/hm2,,在空間尺度上,豫西和豫南丘陵山地模型預測相對誤差高于平原地區(qū),。該研究結(jié)果可為大尺度作物產(chǎn)量預測提供參考,。

    Abstract:

    In order to improve the prediction accuracy of winter wheat yield in large scale region, taking remote sensing data, meteorological data, soil moisture data of Henan Province from 2005 to 2019 as characteristic variables, the correlation between them and wheat yield was analyzed. The importance of characteristic variables was analyzed based on random forest algorithm. And a wheat yield prediction model was established by means of fusing multi-source spatio-temporal data. The results showed that enhanced vegetation index (EVI), solar-induced chlorophyll fluorescence (SIF) and elevation was an important factor for remote sensing estimation of wheat yield, which was highly positively correlated with wheat yield. The importance of EVI, SIF and elevation to wheat yield exceeded 0.45, far greater than soil moisture, rainfall, maximum temperature, minimum temperature and other factors. The yield prediction model based on random forest algorithm and constructed with the wheat growth stage from October to next May and October to next April as the characteristic variables had higher accuracy, coefficient of determination (R2) were 0.85 and 0.84, and respectively, the root mean square error (RMSE) were 821.55kg/hm2 and 832.01kg/hm2. The prediction relative errors in hills and mountains of western and southern Henan was higher than that in plain areas. The research results provided a reference for large-scale crop yield.

    參考文獻
    相似文獻
    引證文獻
引用本文

王來剛,鄭國清,郭燕,賀佳,程永政.融合多源時空數(shù)據(jù)的冬小麥產(chǎn)量預測模型研究[J].農(nóng)業(yè)機械學報,2022,53(1):198-204,458. WANG Laigang, ZHENG Guoqing, GUO Yan, HE Jia, CHENG Yongzheng. Prediction of Winter Wheat Yield Based on Fusing Multi-source Spatio-temporal Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):198-204,,458.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-10-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼