ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于X射線(xiàn)成像與卷積神經(jīng)網(wǎng)絡(luò)的核桃內(nèi)部品質(zhì)檢測(cè)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(201903D221027)


Detection of Walnut Internal Quality Based on X-ray Imaging Technology and Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)目前我國(guó)核桃內(nèi)部品質(zhì)混雜,、不易檢測(cè)等問(wèn)題,,提出利用X射線(xiàn)成像技術(shù)結(jié)合卷積神經(jīng)網(wǎng)絡(luò)對(duì)核桃內(nèi)部品質(zhì)進(jìn)行快速檢測(cè),。對(duì)獲取的核桃X射線(xiàn)圖像進(jìn)行預(yù)處理和數(shù)據(jù)擴(kuò)充,,采用GoogLeNet、ResNet 101,、MobileNet v2和VGG 19共4種遷移學(xué)習(xí)模型構(gòu)建卷積神經(jīng)網(wǎng)絡(luò),,對(duì)核桃數(shù)據(jù)集進(jìn)行訓(xùn)練。通過(guò)預(yù)測(cè)集準(zhǔn)確率,、預(yù)測(cè)損失值,、測(cè)試集準(zhǔn)確率以及運(yùn)行時(shí)間對(duì)模型進(jìn)行分析,優(yōu)化模型參數(shù),,開(kāi)發(fā)核桃內(nèi)部品質(zhì)檢測(cè)分選系統(tǒng)并進(jìn)行模型驗(yàn)證,。研究結(jié)果表明:GoogLeNet模型學(xué)習(xí)率設(shè)置為0.001,迭代次數(shù)設(shè)置為25次時(shí)預(yù)測(cè)效果最優(yōu),,預(yù)測(cè)準(zhǔn)確率為96.67%,。系統(tǒng)驗(yàn)證結(jié)果表明:空殼核桃的判別準(zhǔn)確率達(dá)到100%,平均判別準(zhǔn)確率為96.39%,。該系統(tǒng)可實(shí)現(xiàn)核桃內(nèi)部品質(zhì)的無(wú)損檢測(cè)分選,。

    Abstract:

    In order to solve the problems of export mixed internal quality and not easily to detect of walnuts in China, X-ray imaging technology combined with convolution neural network was proposed to quickly detect the internal quality of walnut. Using X-ray transmittance, X-ray images containing internal information were obtained. Firstly, X-ray images of walnut were preprocessed and data expanded. Then, four transfer learning models, including GoogLeNet, ResNet 101, MobileNet v2 and VGG 19, were used to construct convolutional neural networks to train walnut data sets. The model was analyzed through prediction set accuracy, loss value, test set accuracy and running time, and the model parameters were optimized. Finally, the walnut internal quality detection and sorting system was developed and applied to model verification. The results showed that among the four different transfer learning models, GoogLeNet model had the highest prediction accuracy. When the learning rate of GoogLeNet model was set to 0.001 and the epoch was set to 25, the prediction effect was the best, and the prediction accuracy was 96.67%. The results of system verification showed that the discriminant accuracy of shell walnut reached 100%, and the average discriminant accuracy was 96.39%. The system could realize the non-destructive testing and sorting of walnut internal quality, and provide further theoretical basis and technical reference for the equipment research and development.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張淑娟,高庭耀,任銳,孫海霞.基于X射線(xiàn)成像與卷積神經(jīng)網(wǎng)絡(luò)的核桃內(nèi)部品質(zhì)檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(1):383-388. ZHANG Shujuan, GAO Tingyao, REN Rui, SUN Haixia. Detection of Walnut Internal Quality Based on X-ray Imaging Technology and Convolution Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):383-388.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-04
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-01-10
  • 出版日期:
文章二維碼