ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

土地利用分類粒子群優(yōu)化概率神經(jīng)網(wǎng)絡(luò)半監(jiān)督算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41871333)、河南省科技攻關(guān)項(xiàng)目(222102110038,、222102210131)和河南理工大學(xué)博士基金項(xiàng)目(B2021-19)


Semi-supervised Land Use Classification Based on Particle Swarm Optimization Probabilistic Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)以往土地利用監(jiān)測(cè)大都采用監(jiān)督分類算法,,成本較高、錯(cuò)分漏分嚴(yán)重且受人為因素影響較大的問(wèn)題,,提出了一種粒子群優(yōu)化概率神經(jīng)網(wǎng)絡(luò)的半監(jiān)督分類算法,。該算法通過(guò)粒子群優(yōu)化算法優(yōu)化分類器的參數(shù),提高分類器的精度,,運(yùn)用香農(nóng)熵選擇高置信度的樣本擴(kuò)展初始訓(xùn)練樣本集,,將大量未標(biāo)記的樣本擴(kuò)展到訓(xùn)練樣本集中,減少了初始標(biāo)簽樣本的數(shù)量,,節(jié)約了成本,,并與隨機(jī)森林法、最大似然法,、概率神經(jīng)網(wǎng)絡(luò)算法進(jìn)行對(duì)比分析,,總體精度較其他算法提高了1.25~6.57個(gè)百分點(diǎn),,Kappa系數(shù)達(dá)到0.8以上。對(duì)新鄉(xiāng)市1996年,、2004年,、2013年、2020年的遙感影像進(jìn)行土地分類,,結(jié)果表明1996—2020年間新鄉(xiāng)市的建設(shè)用地以中部地區(qū)新鄉(xiāng)縣為中心不斷擴(kuò)張,,耕地面積也在不斷增加,其他用地面積不斷減少,,沿黃河綠地面積不斷增加,;土地流轉(zhuǎn)方面耕地轉(zhuǎn)建設(shè)用地最為明顯,本研究為新鄉(xiāng)市進(jìn)一步合理開(kāi)發(fā)土地資源提供了理論依據(jù),。

    Abstract:

    Aiming at the problem that most of the land use monitoring in the past uses supervised classification algorithms, which have high costs, wrong leakage points, and greatly affected by human factors, a semi-supervised classification algorithm was proposed for particle swarm optimization probability neural networks, which improved the classification accuracy. The algorithm optimized the parameters of the classifier through the particle swarm optimization algorithm, improved the accuracy of the classifier, and Shannon entropy was used to select high-confidence samples to expand the initial training sample set, a large number of unlabeled samples were expanded to the training sample set, the number of initial label samples were reduced, costs were saved, and it was compared and analyzed with random forest, maximum likelihood method, and probabilistic neural network algorithm, the classification accuracy was improved by 1.25~6.57 percentage points compared with that of other algorithms, and the Kappa coefficient reached more than 0.8. Through the land classification of the remote sensing images of Xinxiang City in 1996, 2004, 2013 and 2020, the results showed that the construction land of Xinxiang City from 1996 to 2020 was continuously expanded in Xinxiang County in the central region, and the cultivated land area was also increased, and the area of other land used was decreased, and the area along the Yellow green area was increased; the land circulation was the most obvious for the conversion of cultivated land to construction land. The research results provided a certain reference for the further rational development of land resources in Xinxiang City.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王春陽(yáng),湯子夢(mèng),吳喜芳,李長(zhǎng)春,張合兵.土地利用分類粒子群優(yōu)化概率神經(jīng)網(wǎng)絡(luò)半監(jiān)督算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(2):167-176. WANG Chunyang, TANG Zimeng, WU Xifang, LI Changchun, ZHANG Hebing. Semi-supervised Land Use Classification Based on Particle Swarm Optimization Probabilistic Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(2):167-176.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-11-27
  • 出版日期:
文章二維碼