ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于高光譜圖像的葉綠素?zé)晒釬v/Fm圖像預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31701326),、陜西省重點研發(fā)計劃項目(2020NY-117)和西安市科技計劃項目(20NYYF0052)


Prediction Method of Chlorophyll Fluorescence Fv/Fm Image Based on Hyperspectral Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    葉綠素?zé)晒鈪?shù)Fv/Fm在植物逆境脅迫研究中具有重要意義,,當(dāng)前獲取方法需要對植物進行暗適應(yīng)處理,難以實現(xiàn)實時測量,。為實現(xiàn)Fv/Fm的實時獲取,,本文以4種水分脅迫水平下的辣椒為研究對象,基于高光譜成像及特征波段篩選方法對Fv/Fm進行預(yù)測,。采用中值濾波對Fv/Fm圖像去噪,,并基于二維坐標(biāo)變換實現(xiàn)高光譜圖像與葉綠素?zé)晒鈭D像的匹配。對比標(biāo)準(zhǔn)正態(tài)變換(SNV),、多元散射校正(MSC)和Savitzky-Golay卷積平滑(SG)3種光譜預(yù)處理算法,,并基于連續(xù)投影(SPA)算法篩選特征波長?;谛Ч顑?yōu)的SG預(yù)處理算法,,分別以偏最小二乘回歸(PLSR)、分析誤差反向傳播(BP)神經(jīng)網(wǎng)絡(luò),、徑向基函數(shù)(RBF)神經(jīng)網(wǎng)絡(luò)對比建模精度,,其中BP算法建立的模型精度相對較高,其測試集決定系數(shù)為0.918,、均方根誤差為0.011,。研究表明,SG-SPA-BP的建模方法在實現(xiàn)預(yù)測精度的同時降低了模型復(fù)雜度,,為基于高光譜圖像對Fv/Fm圖像的實時準(zhǔn)確預(yù)測提供了方法,。

    Abstract:

    The chlorophyll fluorescence Fv/Fm parameter has great significance in plant stress. Current acquisition approaches for the plant’s Fv/Fm need dark adaptation, which cannot realize a real-time measurement. In order to achieve realtime acquisition of Fv/Fm, peppers under four water stress levels were used as research objects, and the Fv/Fm parameter was predicted based on hyperspectral imaging and characteristic wavelength screening methods. The median filter was used to denoise the Fv/Fm image, and the hyperspectral image was matched with the Fv/Fm image based on two-dimensional coordinate transformation. The three types of spectral preprocessing algorithms, including the standard normal variate (SNV), multivariate scattering correction (MSC), and Savitzky-Golay convolution smoothing (SG) were compared, and the successive projections algorithm (SPA) was used to select the characteristic wavelengths. Based on the optimal SG preprocessing algorithm, the modelling accuracy of the partial least square regression (PLSR), analytical error backpropagation (BP) neural network, and radial basis function (RBF) neural network were compared, and the BP algorithm showed the relatively high determination coefficient of 0.918 and root mean square error of 0.011 in the test set. In summary, the SG-SPA-BP modelling method reduced the complexity of the model, while maintaining a high prediction accuracy, which provided an effective approach for predicting the chlorophyll fluorescence Fv/Fm image in real-time.

    參考文獻
    相似文獻
    引證文獻
引用本文

王東,沈楷程,范葉滿,龍博偉.基于高光譜圖像的葉綠素?zé)晒釬v/Fm圖像預(yù)測方法[J].農(nóng)業(yè)機械學(xué)報,2022,53(4):192-198. WANG Dong, SHEN Kaicheng, FAN Yeman, LONG Bowei. Prediction Method of Chlorophyll Fluorescence Fv/Fm Image Based on Hyperspectral Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):192-198.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-02-07
  • 出版日期:
文章二維碼