ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于單目視覺的動態(tài)環(huán)境同步定位與多地圖構建算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(61763037,、61863029),、內蒙古科技計劃項目(2020GG028)和內蒙古科技成果轉化項目(CGZH2018129)


Simultaneous Localization and Multi-mapping Algorithm in Dynamic Environment Based on Monocular Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)V-SLAM算法是在假設場景剛性不變的條件下進行建圖,導致無法實現(xiàn)動態(tài)環(huán)境建圖,,以及傳統(tǒng)算法無法克服因環(huán)境特征不明顯或機器人被“綁架劫持”而導致場景跟丟的問題,,提出一種在動態(tài)環(huán)境下同步定位與多地圖構建(DE-SLAMM)算法。該算法首先引入一種多地圖構建思想,,當跟蹤失敗時會自適應生成一個新的局部地圖,,并在回環(huán)時將該地圖與之前地圖融合,解決算法跟丟后無法建圖的問題,。其次,,結合深度學習和多視圖幾何技術實現(xiàn)對環(huán)境中的動態(tài)物體進行實時檢測,并利用多幀融合技術對動態(tài)對象遮擋的部分進行背景修復,,有效解決動態(tài)環(huán)境下跟蹤建圖問題。最后將該算法應用于實際場景進行測試,,結果表明,,相比經(jīng)典的V-SLAM算法(ORB-SLAM2、ORBSLAMM和DynaSLAM),,當發(fā)生跟蹤丟失時,,本文算法在很短時間內快速重建地圖并實現(xiàn)繼續(xù)跟蹤和新地圖融合,而ORB-SLAM2和DynaSLAM跟丟后進入重定位模式,,無法繼續(xù)建圖,;ORBSLAMM跟丟后雖然可以繼續(xù)建圖,但其建立的地圖不能實現(xiàn)多地圖融合,,無法構建整體地圖,;進一步通過動態(tài)環(huán)境測試實驗發(fā)現(xiàn),只有本文算法可實現(xiàn)所有動態(tài)目標(先驗和移動目標)的實時檢測及背景修復,DynaSLAM只能實現(xiàn)先驗目標檢測,,而其它兩種算法無法實現(xiàn)動態(tài)環(huán)境下目標檢測和建圖,。

    Abstract:

    In view of the traditional V-SLAM algorithm, the map is created under the assumption that the rigidity of the scene remains unchanged, leading to the inability to achieve dynamic environment mapping, and traditional algorithms cannot overcome the problem of scenes being lost due to unobvious environmental features or robots being “kidnapped and hijacked”. An algorithm for simultaneous localization and multi-mapping in a dynamic environment was proposed. Firstly, the algorithm introduced a multi-mapping idea, when tracking failed, a new local map would be adaptively generated, and the map would be merged with the previous map during the loop, to solve the problem that the algorithm cannot be built after the algorithm was lost. Secondly, deep learning and multi-view geometry technology were combined to realize real-time detection of dynamic objects in the environment, and multi-frame fusion technology was used to repair the background of the parts occluded by dynamic objects, effectively solving the problem of tracking and mapping in a dynamic environment. Finally, the algorithm was applied to actual scenes for testing. The results showed that compared with the classic V-SLAM (ORB-SLAM2, ORBSLAMM and DynaSLAM) algorithm, when tracking loss occurred, the proposed algorithm can quickly rebuild the map in a short time. And to realize the continuous tracking and the new map integration, ORB-SLAM2 and DynaSLAM would enter the relocation mode after being lost, and cannot continue to build. Although ORBSLAMM can continue to build maps after being lost, the built maps cannot achieve multi-mapping integration and cannot build an overall map; further through dynamic environment test experiments, it was found that only the algorithm can achieve all dynamic goals (a priori and moving goals). For real-time detection and background restoration, DynaSLAM can only achieve a priori target detection, while the other two algorithms cannot achieve target detection and mapping in a dynamic environment.

    參考文獻
    相似文獻
    引證文獻
引用本文

齊詠生,陳培亮,劉利強,董朝軼.基于單目視覺的動態(tài)環(huán)境同步定位與多地圖構建算法[J].農業(yè)機械學報,2022,53(4):280-292. QI Yongsheng, CHEN Peiliang, LIU Liqiang, DONG Chaoyi. Simultaneous Localization and Multi-mapping Algorithm in Dynamic Environment Based on Monocular Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):280-292.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-04-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-19
  • 出版日期:
文章二維碼