ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的大田甘藍(lán)在線識(shí)別模型建立與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFE0125200)、國(guó)家大宗蔬菜產(chǎn)業(yè)技術(shù)體系崗位專家項(xiàng)目(CARS-23-C06),、北京市農(nóng)林科學(xué)院智能裝備技術(shù)研究中心開放項(xiàng)目(KF2020W010)和中國(guó)煙草總公司云南省公司科技計(jì)劃重點(diǎn)項(xiàng)目(2020530000241031)


Establishment and Experimental Verification of Deep Learning Model for On-line Recognition of Field Cabbage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)大田蔬菜對(duì)靶施藥過程中靶標(biāo)難以精準(zhǔn)識(shí)別定位的問題,以甘藍(lán)為研究對(duì)象,,進(jìn)行基于深度學(xué)習(xí)的靶標(biāo)在線識(shí)別方法與模型研究,。對(duì)比3種當(dāng)前性能較優(yōu)的目標(biāo)檢測(cè)模型Faster R-CNN,、SSD和YOLO v5s,選擇YOLO v5s作為田間甘藍(lán)識(shí)別遷移學(xué)習(xí)模型,,提出一種MobileNet v3s主干特征提取網(wǎng)絡(luò)與深度可分離卷積融合的YOLO-mdw大田甘藍(lán)目標(biāo)識(shí)別方法,,實(shí)現(xiàn)復(fù)雜環(huán)境下的大田甘藍(lán)實(shí)時(shí)識(shí)別;提出一種基于卡爾曼濾波和匈牙利算法的甘藍(lán)目標(biāo)定位方法,,并將模型部署于NVIDIA Xavier NX開發(fā)板上,。試驗(yàn)結(jié)果表明,YOLO-mdw識(shí)別模型在晴天,、多云,、陰雨天氣條件下識(shí)別準(zhǔn)確率分別為93.14%、94.75%和94.23%,,圖像處理時(shí)間為54.09ms,,相對(duì)于YOLO v5s模型用時(shí)縮短26.98%;速度不大于0.6m/s時(shí),,識(shí)別準(zhǔn)確率達(dá)94%,,平均定位誤差為4.13cm,平均甘藍(lán)直徑識(shí)別誤差為1.42cm,。該靶標(biāo)識(shí)別系統(tǒng)能在大田復(fù)雜環(huán)境下對(duì)甘藍(lán)進(jìn)行實(shí)時(shí)識(shí)別定位,,為對(duì)靶施藥提供技術(shù)支持。

    Abstract:

    It is difficult to accurately identify and locate the target in the process of target application of field vegetables. Aiming at the problem, taking cabbage as the research object, the target recognition method and experimental research based on deep learning were carried out. Compared with Faster R-CNN, SSD and YOLO v5s, three current target detection networks with good performance, YOLO v5s was selected as the transfer learning model for field cabbage recognition. Lightweight neural network was selected as the backbone. The fusion depth can be separated and convoluted to reduce the calculation parameters of the model, YOLO-mdw network integrating MobileNet v3s backbone and deepwise separable convolution was proposed to realize the real-time recognition of field cabbage in complex environment. A cabbage-target recognition and positioning method based on Kalman filter and Hungarian algorithm was proposed, and the model was deployed on NVIDIA Xavier NX development board. The experimental results showed that the recognition accuracy of the recognition network under sunny, cloudy and rainy weather conditions was 93.14%, 94.75% and 94.23%, respectively. The image processing time was 54.09ms, which was 26.98% shorter than that of the original YOLO v5s. When the speed was not more than 0.6m/s, the recognition accuracy was 94%, the average positioning error was 4.13cm, and the average cabbage diameter recognition error was 1.42cm. The designed target recognition system could identify and locate cabbage in complex field environment in real time, and provide technical support for target oriented spraying.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

翟長(zhǎng)遠(yuǎn),付豪,鄭康,鄭申玉,吳華瑞,趙學(xué)觀.基于深度學(xué)習(xí)的大田甘藍(lán)在線識(shí)別模型建立與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(4):293-303. ZHAI Changyuan, FU Hao, ZHENG Kang, ZHENG Shenyu, WU Huarui, ZHAO Xueguan. Establishment and Experimental Verification of Deep Learning Model for On-line Recognition of Field Cabbage[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(4):293-303.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-02-21
  • 出版日期:
文章二維碼