ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

模糊水下圖像多增強(qiáng)與輸出混合的魚類檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61972240)和上海市科委部分地方高校能力建設(shè)項目(20050501900、20050500700)


Fish Detection Method of Multiple Enhanced and Outputs Blend for Blurred Underwater Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對模糊水下圖像增強(qiáng)后輸入魚類檢測模型精度降低的問題,,提出了模糊水下圖像多增強(qiáng)與輸出混合的魚類檢測方法,。利用多種圖像增強(qiáng)方法對模糊的水下圖像進(jìn)行增強(qiáng),將增強(qiáng)后的圖像分別輸入魚類檢測模型得到多個輸出,,對多個輸出進(jìn)行混合,,然后利用非極大抑制方法對混合結(jié)果進(jìn)行后處理,獲得最終檢測結(jié)果,。YOLO v3,、YOLO v4 tiny和YOLO v4模型的試驗結(jié)果表明,對比原始圖像的檢測結(jié)果,,本文方法的檢測精度分別提高了2.15,、8.35、1.37個百分點,;魚類檢測數(shù)量分別提高了15.5%,、49.8%、12.7%,,避免了模糊水下圖像增強(qiáng)后輸入魚類檢測模型出現(xiàn)精度降低的問題,,提高了模型檢測能力。

    Abstract:

    The underwater images of aquaculture ponds, rivers and sea inlets were generally fuzzy and low contrast due to the influence of water turbidity and light attenuation in water. However, the existing literature found that the clarity brought by image enhancement cannot directly improve the detection ability of fish detection model, and even the detection accuracy of the model was degraded. An multiple and outputs blend enhanced method was proposed for fish detection. Blurred underwater images were enhanced by various image enhancement methods, and the enhanced images were input into the fish detection model to obtain multiple outputs. Then the mixed results were postprocessed by non-maximal inhibition method to obtain final test results. Compared with the detection results of the original image, the experimental results on YOLO v3, YOLO v4 tiny and YOLO v4 models showed that the detection accuracy of the proposed method was improved by 2.15 percentage points, 8.35 percentage points and 1.37 percentage points, and the number of fish was increased by 15.5%, 49.8% and 12.7%, respectively. The proposed method achieved the purpose of improving the model detection ability, and it can be applied to fish count and fish category detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

覃學(xué)標(biāo),黃冬梅,宋巍,賀琪,杜艷玲,徐慧芳.模糊水下圖像多增強(qiáng)與輸出混合的魚類檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2022,53(7):243-249. QIN Xuebiao, HUANG Dongmei, SONG Wei, HE Qi, DU Yanling, XU Huifang. Fish Detection Method of Multiple Enhanced and Outputs Blend for Blurred Underwater Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):243-249.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-08-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼