ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Res2Net和雙線性注意力的番茄病害時期識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(71971002),、安徽省重大專項(202003a06020016)和安徽省教育廳科學研究項目(YJS20210029)


Identification Method of Tomato Disease Period Based on Res2Net and Bilinear Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對番茄葉片型病害在早晚期具有類內(nèi)差異大、類間差異小的特點,,常規(guī)神經(jīng)網(wǎng)絡對此類病害的分類效果不佳的問題,,提出了基于Res2Net和雙線性注意力的番茄病害時期識別方法,通過多尺度特征和注意力機制,,提高網(wǎng)絡的細粒度表征能力。首先,,提出EFCA通道注意力模塊,,在不降維的基礎(chǔ)上,使用二維離散余弦變換代替全局平均池化,,以減少常規(guī)通道注意力獲取時的信息丟失,。其次,在外積之后加入最大池化和concat操作,,避免雙線性融合后因維度過高導致的特征冗余,。在7種不同種類和14種不同程度病害番茄葉面型病害數(shù)據(jù)集實驗中,本文方法分類準確度分別為98.66%和86.89%,。

    Abstract:

    Tomato leaf-type diseases have the characteristics of large intra-class differences and small inter-class differences in the early and late stages. The conventional neural network is not effective in classifying such diseases. Therefore, based on the fine-grained weakly supervised classification method, a Res2Net bilinear attention network, combining the bilinear model and attention mechanism, was proposed. The fine-grained representation ability was improved through extracting multi-scale features and combining the attention mechanism. First of all, for the problem of information loss in the process of conventional channel attention acquisition, the EFCA channel attention module was proposed. On the basis of no dimensionality reduction, two-dimensional discrete cosine transform was used instead of global average pooling to avoid some features from being lost in downsampling. Secondly, by adding the maximum pooling after the outer product, and the concat module designed by drawing on the shortcut idea in the residual network, the problem of redundant features caused by the excessively high dimensionality after bilinear fusion was solved. The obtained classification accuracies of the proposed model on the data set with 7 types and 14 different degrees of tomato leaf type diseases were 98.66% and 86.89%, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

賈兆紅,張袁源,王海濤,梁棟.基于Res2Net和雙線性注意力的番茄病害時期識別方法[J].農(nóng)業(yè)機械學報,2022,53(7):259-266. JIA Zhaohong, ZHANG Yuanyuan, WANG Haitao, LIANG Dong. Identification Method of Tomato Disease Period Based on Res2Net and Bilinear Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):259-266.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼