ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于生物阻抗的即配羊肉貨架期無損檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系項目(CARS-38)和歐盟Switch Asia項目(DCI:ASIE/2012/307-186)


Bioimpedance-based Nondestructive Detection Method for Shelf-life of Ready-to-prepare Mutton
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    貨架期是判斷羊肉新鮮度的重要標準。為探討生物阻抗技術在食品貨架期檢測方面的應用前景,,提出了一種即配羊肉貨架期無損檢測方法,。結合影響即配羊肉新鮮度變化的關鍵因素及生物阻抗的測量原理,針對電極數(shù)量,、電極材料,、電極排列方式等測試條件的不同,自主設計了電極作為生物阻抗測試前端,。揭示了在0,、4、8℃的3個貯藏溫度下即配羊肉阻抗參數(shù)和TVB-N含量的變化規(guī)律及即配羊肉阻抗與TVB-N含量,、貨架期的相關性,;以TVB-N含量為關鍵參考指標,建立基于BP神經(jīng)網(wǎng)絡的即配羊肉貨架期預測模型和評價方法,,并將其與支持向量機模型,、決策樹模型進行對比,BP神經(jīng)網(wǎng)絡模型的F1分數(shù)可達95.9%,?;贐P神經(jīng)網(wǎng)絡模型設計即配羊肉貨架期檢測系統(tǒng),,可實現(xiàn)用戶友好的數(shù)據(jù)可視化與即配羊肉貨架期的即時檢測。

    Abstract:

    Shelf life is an important indicator for evaluating the freshness of mutton, which is directly related to its quality. To explore the application prospects of bioimpedance technology for shelf-life detection of food, a nondestructive and efficient shelflife detection method was proposed for ready-to-prepare mutton. Combining the key factors affecting the change of freshness of ready-to-prepare mutton and the measurement principle of bioimpedance, the electrodes were designed independently for measuring bioimpedance according to the different testing conditions such as the number of electrodes, electrode materials, and electrode arrangement. The changes of impedance and TVB-N content of read-to-prepare mutton at three storage temperatures of 0℃, 4℃ and 8℃ and the correlation of impedance with TVB-N content and shelf life were revealed;a shelf-life prediction model and evaluation method of ready-to-prepare mutton based on BP neural network was established with TVB-N content as the key indicator, and it was compared with SVM (support vector machine) model and decision tree model. The F1-score of the BP neural network model was up to 95.9%. Based on the BP neural network model established above, a shelf-life detection system of ready-to-prepare mutton was developed by using Java language, which realized user-friendly data visualization and real-time detection of the shelf life of ready-to-prepare mutton. The research result can provide theoretical basis and software tool for the rapid and nondestructive detection of the shelf life of ready-to-prepare mutton, which can ensure the quality and safety of ready-to-prepare mutton and promote the sustainable and healthy development of the food industry.

    參考文獻
    相似文獻
    引證文獻
引用本文

李鑫星,張子怡,梁步穩(wěn),黃曉燕,張國祥,馬瑞芹.基于生物阻抗的即配羊肉貨架期無損檢測方法[J].農(nóng)業(yè)機械學報,2022,53(7):379-386. LI Xinxing, ZHANG Ziyi, LIANG Buwen, HUANG Xiaoyan, ZHANG Guoxiang, MA Ruiqi. Bioimpedance-based Nondestructive Detection Method for Shelf-life of Ready-to-prepare Mutton[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(7):379-386.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-10
  • 出版日期:
文章二維碼