ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度學(xué)習(xí)的無(wú)人機(jī)遙感小麥倒伏面積提取方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

河南省科技攻關(guān)計(jì)劃項(xiàng)目(212102110253、222102110244),、國(guó)家自然科學(xué)基金項(xiàng)目(62072160),、河南省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)經(jīng)濟(jì)與信息研究所科技創(chuàng)新領(lǐng)軍人才培育項(xiàng)目(2022KJCX02)和河南省農(nóng)業(yè)科學(xué)院科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2022TD14)


Extraction of Lodging Area of Wheat Varieties by Unmanned Aerial Vehicle Remote Sensing Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為及時(shí)準(zhǔn)確地提取小麥倒伏面積,,提出一種融合多尺度特征的倒伏面積分割模型Attention_U2-Net。該模型以U2-Net為架構(gòu),,利用非局部注意力(Non-local attention)機(jī)制替換步長(zhǎng)較大的空洞卷積,,擴(kuò)大高層網(wǎng)絡(luò)感受野,提高不同尺寸地物識(shí)別準(zhǔn)確率,;使用通道注意力機(jī)制改進(jìn)級(jí)聯(lián)方式提升模型精度,;構(gòu)建多層級(jí)聯(lián)合加權(quán)損失函數(shù),用于解決均衡難易度和正負(fù)樣本不均衡問(wèn)題,。Attention_U2-Net在自建數(shù)據(jù)集上采用裁剪方式提取小麥倒伏面積,,查準(zhǔn)率為86.53%,召回率為89.42%,,F(xiàn)1值為87.95%,。與FastFCN、U-Net,、U2-Net,、FCN、SegNet,、DeepLabv3等模型相比,,Attention_U2-Net具有最高的F1值。通過(guò)與標(biāo)注面積對(duì)比,,Attention_U2-Net使用裁剪方式提取面積與標(biāo)注面積最為接近,,倒伏面積準(zhǔn)確率可達(dá)97.25%,且誤檢面積最小,。實(shí)驗(yàn)結(jié)果表明,,Attention_U2-Net對(duì)小麥倒伏面積提取具有較強(qiáng)的魯棒性和準(zhǔn)確率,可為無(wú)人機(jī)遙感小麥?zhǔn)転?zāi)面積及評(píng)估損失提供參考,。

    Abstract:

    In order to extract the lodging area timely and accurately, a lodging area extraction model, namely Attention_U2-Net, was proposed. By integrating multi-scale features and based on U2-Net, Attention_U2-Net employed non-local attention mechanism to replace the hole convolution with large step size, expanded the receptive field of high-level network and improved the recognition accuracy of ground objects with different sizes, and utilized channel attention mechanism to improve the cascade mode and enhanced the accuracy. A multi-level joint weighted loss function was designed to balance the difficult and easy samples, and solve the challenge of imbalance between positive and negative samples. Patch-based pipelines were utilized to extract the lodging area. Experimental results on the self-built dataset showed effectiveness of Attention_U2-Net. The precision rate was 86.53%, the recall rate was 89.42%, and the F1 value was 87.95%, respectively. Compared with FastFCN, U-Net, U2-Net, FCN, SegNet and DeepLabv3, Attention_U2-Net achieved the highest F1 value and showed strong robustness and extraction accuracy. Compared with the labeled area, the extracted area obtained by Attention_U2-Net via cropping method was the closest one, and the accuracy rate of lodging area can reach 97.25%. Meanwhile, the false detection area of Attention_U2-Net was the smallest among all models. Experimental results showed that Attention_U2-Net had strong robustness and high segmentation accuracy, which can be utilized as a valuable reference for UAV remote sensing of wheat affected area and loss assessment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

申華磊,蘇歆琪,趙巧麗,周萌,劉棟,臧賀藏.基于深度學(xué)習(xí)的無(wú)人機(jī)遙感小麥倒伏面積提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(9):252-260,,341. SHEN Hualei, SU Xinqi, ZHAO Qiaoli, ZHOU Meng, LIU Dong, ZANG Hecang. Extraction of Lodging Area of Wheat Varieties by Unmanned Aerial Vehicle Remote Sensing Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):252-260,341.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-04-16
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼