ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于LightGBM和處方數(shù)據(jù)的番茄病害診斷方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(62176261)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術體系北京市葉類蔬菜創(chuàng)新團隊建設項目(BAIC07-2022)


Tomato Disease Diagnosis Method Based on LightGBM and Prescription Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為高效地挖掘植物病害處方數(shù)據(jù)并輔助精準診斷,,以番茄病毒病,、番茄晚疫病、番茄灰霉病3種病害為研究對象,,構建基于貝葉斯優(yōu)化LightGBM的番茄病害智能診斷模型,,探索作物病害處方數(shù)據(jù)挖掘及其精準診斷。重點對處方原數(shù)據(jù)(文本數(shù)據(jù)標簽和One-hot編碼等)進行預處理,,以基于Wrapper的遞歸特征消除法進一步提取作物病害處方數(shù)據(jù)的特征,;利用基于LightGBM算法構建番茄病害診斷模型,并與K近鄰(KNN),、決策樹(DT),、支持向量機(SVM)、隨機森林(RF),、梯度提升決策樹(GDBT),、AdaBoost和XGBoost常見機器學習模型運行結果進行比較分析并進行優(yōu)化;設計基于LightGBM模型的Android手機端植物醫(yī)生病害診斷APP,。實驗結果表明,,基于貝葉斯優(yōu)化的LightGBM模型綜合診斷準確率可達到89.11%,,比其他7種機器學習模型的診斷準確率平均高3.65個百分點;同時特征選擇后的LightGBM模型在保證模型準確率的基礎上降低了前期數(shù)據(jù)收集難度,,模型綜合準確率提高至89.34%,,其中番茄病毒病的診斷精確度和F1值均達到96%以上,運行時間減少了47.73%,;最后通過番茄葉霉病和番茄早疫病兩種病害對本文模型進行了泛化能力測試,,實驗結果表明該模型具有較強的泛化能力和實用性?;贚ightGBM模型設計的APP可以實現(xiàn)用戶人群友好的交互式可視化且滿足實際診斷需求,。

    Abstract:

    Aiming at the problem of how to efficiently mine prescription big data and assist in accurate diagnosis, tomato virus disease, tomato late blight and tomato gray mold were selected as the research objects, and an intelligent diagnosis model of tomato disease based on Bayesian optimization LightGBM was constructed to explore the data mining and accurate diagnosis of crop disease prescription. The primary data (text data label and One-hot coding, etc.) were preprocessed, and the features of crop disease prescription data were further extracted by recursive feature elimination method based on Wrapper. The tomato disease diagnosis model was constructed based on LightGBM algorithm, and compared with the running results of K-nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), random forest (RF), gradient boosting decision tree (GDBT), AdaBoost and XGBoost common machine learning models. An Android mobile terminal plant doctor disease diagnosis APP was designed based on LightGBM model. The experimental results showed that the comprehensive diagnosis accuracy of LightGBM model based on Bayesian optimization can reach 89.11%, which was 3.65 percentage points higher than that of other seven machine learning models on average. At the same time, the LightGBM model after feature selection reduced the difficulty of data collection in the early stage on the basis of ensuring the accuracy of the model, and the comprehensive accuracy of the model was improved to 89.34%. Among them, the diagnostic accuracy of tomato virus disease and F1-score could reach more than 96%, and the running time was reduced by 47.73%. Finally, the generalization ability of the proposed model was tested by tomato leaf mildew and tomato early blight, and the experimental results indicated that the model had strong generalization ability and practicability. The APP designed based on LightGBM model can realize user friendly interactive visualization and meet the actual diagnostic needs.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐暢,丁俊琦,趙聃桐,喬巖,張領先.基于LightGBM和處方數(shù)據(jù)的番茄病害診斷方法[J].農(nóng)業(yè)機械學報,2022,53(9):286-294. XU Chang, DING Junqi, ZHAO Dantong, QIAO Yan, ZHANG Lingxian. Tomato Disease Diagnosis Method Based on LightGBM and Prescription Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(9):286-294.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-09-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-09-10
  • 出版日期:
文章二維碼