ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于深度圖像的球形果實(shí)識(shí)別定位算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(51779050)和黑龍江省自然科學(xué)基金項(xiàng)目(F2016022)


Spherical Fruit Recognition and Location Algorithm Based on Depth Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了解決近色背景果實(shí)識(shí)別困難問(wèn)題,針對(duì)果實(shí)近球形的形態(tài)特性,提出了一種利用深度圖像從果實(shí)形態(tài)角度進(jìn)行果實(shí)識(shí)別定位的算法。該算法使用深度攝像頭獲取果樹(shù)的深度圖像,通過(guò)深度圖像計(jì)算出各像素點(diǎn)的梯度向量,,將梯度向量看作運(yùn)動(dòng)矢量場(chǎng),并計(jì)算出矢量場(chǎng)的散度,,根據(jù)散度最大原則,,從矢量場(chǎng)中搜索出輻散中心點(diǎn);然后利用果實(shí)和葉片等深圖像的差異從輻散中心點(diǎn)中篩選出果實(shí)中心點(diǎn),,以果實(shí)中心點(diǎn)為起點(diǎn)采用八方向搜索方法搜索出果實(shí)邊界點(diǎn),,將果實(shí)邊界點(diǎn)依次連接后形成的封閉區(qū)域內(nèi)的果實(shí)圖像導(dǎo)入點(diǎn)云;最后根據(jù)果實(shí)圖像部分點(diǎn)云利用RANSAC算法求出目標(biāo)果實(shí)的擬合球形,,進(jìn)而得出果實(shí)的尺寸以及三維空間位置,。該算法無(wú)需傳統(tǒng)算法需要利用的顏色特征,而僅利用了深度圖像中的深度信息進(jìn)行果實(shí)識(shí)別定位,,能夠克服傳統(tǒng)算法受色彩,、光照等因素影響的弊端,并且由于該算法完全沒(méi)有利用到彩色圖像信息,,因此不僅可以實(shí)現(xiàn)綠色果實(shí)的識(shí)別定位,,還可以實(shí)現(xiàn)采摘機(jī)器人在夜間環(huán)境下正常工作,為復(fù)雜環(huán)境下的果實(shí)識(shí)別定位算法研究提供了技術(shù)支撐,。

    Abstract:

    In order to solve the difficulty of fruit recognition in near color background, an algorithm for identifying and locating fruits from the depth image was presented based on the near-spherical morphological characteristics of fruits. A depth camera was used to get depth image of a fruit tree. The gradient vectors of each pixel point from the depth image were calculated. The gradient vector was considered as a vector field of motion and the divergence of the vector field was calculated. Searching for divergence center points from vector fields according to the principle of maximum divergence. The fruit center point was selected from the divergence center point by using the difference of the contour image between the fruit and the leaf. The fruit boundary points were searched in eight directions from the center point of the fruit. The fruit images in the closed area formed by connecting the fruit boundary points were imported into the point cloud. Finally, the point cloud was used to find the fitting circle of the target fruit according to the random sample consensus (RANSAC) algorithm, and the size and spatial location of the fruit were obtained. The algorithm discarded the color features commonly used in traditional algorithms but used only the depth information in the depth image for fruit recognition and positioning. It can overcome the drawbacks of traditional algorithms affected by color, illumination and other factors. Because the algorithm did not use color image information at all, it can not only recognize and locate green fruits, but also enable the harvesting robot to work in dark environment. The research result can provide a method for fruits recognition and location in complex environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

柳長(zhǎng)源,賴楠旭,畢曉君.基于深度圖像的球形果實(shí)識(shí)別定位算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(10):228-235. LIU Changyuan, LAI Nanxu, BI Xiaojun. Spherical Fruit Recognition and Location Algorithm Based on Depth Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(10):228-235.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-11-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-06-09
  • 出版日期:
文章二維碼