ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進DeepLab V3+的果園場景多類別分割方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(32171908)、江蘇省現(xiàn)代農(nóng)機裝備與技術示范推廣項目(NJ2021-14),、寧夏回族自治區(qū)重點研發(fā)計劃重大項目(2018BBF02020),、江蘇省重點研發(fā)計劃項目(BE2018372)和江蘇高校優(yōu)勢學科建設工程項目(PAPD)


Multi-category Segmentation of Orchard Scene Based on Improved DeepLab V3+
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    果園環(huán)境實時檢測是保證果園噴霧機器人精準作業(yè)的重要前提。本文提出了一種基于改進DeepLab V3+語義分割模型的果園場景多類別分割方法。為了在果園噴霧機器人上部署,,使用輕量化MobileNet V2網(wǎng)絡替代原有的Xception網(wǎng)絡以減少網(wǎng)絡參數(shù),,并在空洞空間金字塔池化(Atrous spatial pyramid pooling,ASPP)模塊中運用ReLU6激活函數(shù)減少部署在移動設備的精度損失,,此外結(jié)合混合擴張卷積(Hybrid dilated convolution,,HDC),以混合擴張卷積替代原有網(wǎng)絡中的空洞卷積,,將ASPP中的擴張率設為互質(zhì)以減少空洞卷積的網(wǎng)格效應,。使用視覺傳感器采集果園場景RGB圖像,選取果樹,、人,、天空等8類常見的目標制作了數(shù)據(jù)集,并在該數(shù)據(jù)集上基于Pytorch對改進前后的DeepLab V3+進行訓練,、驗證和測試,。結(jié)果表明,改進后DeepLab V3+模型的平均像素精度,、平均交并比分別達到62.81%和56.64%,,比改進前分別提升5.52、8.75個百分點,。模型參數(shù)量較改進前壓縮88.67%,,單幅圖像分割時間為0.08s,與原模型相比減少0.09s,。尤其是對樹的分割精度達到95.61%,,比改進前提高1.31個百分點。該方法可為噴霧機器人精準施藥和安全作業(yè)提供有效決策,,具有實用性,。

    Abstract:

    Real-time detection of orchard environment is an important prerequisite to ensure the accurate operation of orchard spray robot. An improved DeepLab V3+ semantic segmentation model was proposed for multi-category segmentation in orchard scene. For deployment on the orchard spray robot, the lightweight MobileNet V2 network was used to replace the original Xception network to reduce the network parameters, and ReLU6 activation function was applied in atrous spatial pyramid pooling (ASPP) module to reduce the loss of accuracy when deployed in mobile devices. In addition, hybrid dilated convolution (HDC) was combined to replace the void convolution in the original network. The dilated rates in ASPP were prime to each other to reduce the grid effect of dilated convolution. The RGB images of orchard scene were collected by using visual sensor, and eight common targets were selected to make the dataset, such as fruit trees, pedestrians and sky. On this dataset, DeepLab V3+ before and after improvement was trained, verified and tested based on Pytorch. The results showed that the mean pixel accuracy and mean intersection over union of the improved Deeplab V3+ model were 62.81% and 56.64%, respectively, which were 5.52 percentage points and 8.75 percentage points higher than before improvement. Compared with the original model, the parameters were reduced by 88.67%. The segmentation time of a single image was 0.08s, which was 0.09s less than the original model. In particular, the accuracy of tree segmentation reached 95.61%, which was 1.31 percentage points higher than before improvement. This method can provide an effective decision for precision spraying and safe operation of the spraying robot, and it was practical.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉慧,姜建濱,沈躍,賈衛(wèi)東,曾瀟,莊珍珍.基于改進DeepLab V3+的果園場景多類別分割方法[J].農(nóng)業(yè)機械學報,2022,53(11):255-261. LIU Hui, JIANG Jianbin, SHEN Yue, JIA Weidong, ZENG Xiao, ZHUANG Zhenzhen. Multi-category Segmentation of Orchard Scene Based on Improved DeepLab V3+[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):255-261.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-01-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼