ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進YOLO v5的寧夏草原蝗蟲識別模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

寧夏自然科學基金項目(2019AAC03122),、寧夏農(nóng)業(yè)高質(zhì)量發(fā)展和生態(tài)保護科技創(chuàng)新項目(NGSB-2021-14-05)和北方民族大學校級項目(2019KJ43,、2019KYQD49)


Research of Locust Recognition in Ningxia Grassland Based on Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對草原蝗蟲圖像具有樣本收集困難、目標較小和目標多尺度等技術(shù)難點,,基于YOLO v5網(wǎng)絡(luò),,提出了一種復雜背景下多尺度蝗蟲目標檢測識別模型YOLO v5-CB,用于寧夏草原常見蝗蟲檢測,。改進模型YOLO v5-CB針對蝗蟲原始樣本量較少的問題,,使用CycleGAN網(wǎng)絡(luò)擴充蝗蟲數(shù)據(jù)集;針對蝗蟲圖像中的小目標特征,,使用ConvNeXt來保留小目標蝗蟲的特征;為有效解決蝗蟲圖像尺度特征變換較大問題,,在頸部特征融合使用Bi-FPN結(jié)構(gòu),,來增強網(wǎng)絡(luò)對多尺度目標的特征融合能力。實驗結(jié)果表明,,在對寧夏草原常見亞洲小車蝗,、短星翅蝗、中華劍角蝗進行檢測識別時,,YOLO v5-CB的識別精度可達98.6%,,平均精度均值達到96.8%,F(xiàn)1值為98%,,與Faster R-CNN,、YOLO v3、YOLO v4,、YOLO v5模型相比,,識別精度均有提高。將改進的蝗蟲檢測識別模型YOLO v5-CB與研發(fā)的分布式可擴展生態(tài)環(huán)境數(shù)據(jù)采集系統(tǒng)結(jié)合,,構(gòu)建了基于4G網(wǎng)絡(luò)的Web端蝗蟲識別平臺,,可對觀測點的蝗蟲圖像進行長期實時檢測。目前,,該平臺已在寧夏回族自治區(qū)鹽池縣大水坑,、黃記場、麻黃山等地的草原生態(tài)環(huán)境數(shù)據(jù)獲取中得到了應用,可對包括寧夏草原蝗蟲信息在內(nèi)的多種生態(tài)環(huán)境信息進行長期檢測和跟蹤,,為蟲情防治等提供決策依據(jù),。

    Abstract:

    There are several challenges for locust recognition, i.e., sample collection, small sample targets and multi-scale transformation in grassland locust images. A multi-scale grasshopper target detection and recognition model was proposed under complex background based on YOLO v5 network, which was used to recognize common grasshoppers in Ningxia grassland. To address the difficulty in sample collection, CycleGAN was used to expand the locust data set. Then, ConvNeXt was adopted to preserve the characteristics of small target locusts. Finally, Bi-FPN was utilized for neck feature fusion to enhance the capability of extracting locust features, which effectively solved the problem of large-scale transformation of locust photos. The experimental results showed that the best accuracy of the proposed model YOLO v5-CB was 98.6%, the mean average accuracy of the proposed scheme was 96.8%, and the F1 was 98%, which performed better than the Faster R-CNN, YOLO v3, YOLO v4 and YOLO v5. Using the improved model YOLO v5-CB, combined with the ecological environment collection equipment installed in Yanchi and Dashuikeng in Ningxia, a Web-based locust identification and detection platform was established, which had already been applied to grassland ecological environment data collection in Ningxia Yanchi Dashuikeng, Huangji Farm and Mahuang Mountain. This platform performed real-time tracking of locust in desert steppe of Ningxia, which can be further used for locust control in Ningxia. 

    參考文獻
    相似文獻
    引證文獻
引用本文

馬宏興,張淼,董凱兵,魏淑花,張蓉,王順霞.基于改進YOLO v5的寧夏草原蝗蟲識別模型研究[J].農(nóng)業(yè)機械學報,2022,53(11):270-279. MA Hongxing, ZHANG Miao, DONG Kaibing, WEI Shuhua, ZHANG Rong, WANG Shunxia. Research of Locust Recognition in Ningxia Grassland Based on Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):270-279.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼