ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5的寧夏草原蝗蟲識(shí)別模型研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏自然科學(xué)基金項(xiàng)目(2019AAC03122),、寧夏農(nóng)業(yè)高質(zhì)量發(fā)展和生態(tài)保護(hù)科技創(chuàng)新項(xiàng)目(NGSB-2021-14-05)和北方民族大學(xué)校級(jí)項(xiàng)目(2019KJ43,、2019KYQD49)


Research of Locust Recognition in Ningxia Grassland Based on Improved YOLO v5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)草原蝗蟲圖像具有樣本收集困難、目標(biāo)較小和目標(biāo)多尺度等技術(shù)難點(diǎn),,基于YOLO v5網(wǎng)絡(luò),,提出了一種復(fù)雜背景下多尺度蝗蟲目標(biāo)檢測(cè)識(shí)別模型YOLO v5-CB,用于寧夏草原常見蝗蟲檢測(cè),。改進(jìn)模型YOLO v5-CB針對(duì)蝗蟲原始樣本量較少的問題,,使用CycleGAN網(wǎng)絡(luò)擴(kuò)充蝗蟲數(shù)據(jù)集;針對(duì)蝗蟲圖像中的小目標(biāo)特征,,使用ConvNeXt來保留小目標(biāo)蝗蟲的特征,;為有效解決蝗蟲圖像尺度特征變換較大問題,在頸部特征融合使用Bi-FPN結(jié)構(gòu),,來增強(qiáng)網(wǎng)絡(luò)對(duì)多尺度目標(biāo)的特征融合能力,。實(shí)驗(yàn)結(jié)果表明,,在對(duì)寧夏草原常見亞洲小車蝗,、短星翅蝗、中華劍角蝗進(jìn)行檢測(cè)識(shí)別時(shí),,YOLO v5-CB的識(shí)別精度可達(dá)98.6%,,平均精度均值達(dá)到96.8%,,F(xiàn)1值為98%,與Faster R-CNN,、YOLO v3,、YOLO v4、YOLO v5模型相比,,識(shí)別精度均有提高,。將改進(jìn)的蝗蟲檢測(cè)識(shí)別模型YOLO v5-CB與研發(fā)的分布式可擴(kuò)展生態(tài)環(huán)境數(shù)據(jù)采集系統(tǒng)結(jié)合,構(gòu)建了基于4G網(wǎng)絡(luò)的Web端蝗蟲識(shí)別平臺(tái),,可對(duì)觀測(cè)點(diǎn)的蝗蟲圖像進(jìn)行長期實(shí)時(shí)檢測(cè),。目前,該平臺(tái)已在寧夏回族自治區(qū)鹽池縣大水坑,、黃記場(chǎng),、麻黃山等地的草原生態(tài)環(huán)境數(shù)據(jù)獲取中得到了應(yīng)用,可對(duì)包括寧夏草原蝗蟲信息在內(nèi)的多種生態(tài)環(huán)境信息進(jìn)行長期檢測(cè)和跟蹤,,為蟲情防治等提供決策依據(jù),。

    Abstract:

    There are several challenges for locust recognition, i.e., sample collection, small sample targets and multi-scale transformation in grassland locust images. A multi-scale grasshopper target detection and recognition model was proposed under complex background based on YOLO v5 network, which was used to recognize common grasshoppers in Ningxia grassland. To address the difficulty in sample collection, CycleGAN was used to expand the locust data set. Then, ConvNeXt was adopted to preserve the characteristics of small target locusts. Finally, Bi-FPN was utilized for neck feature fusion to enhance the capability of extracting locust features, which effectively solved the problem of large-scale transformation of locust photos. The experimental results showed that the best accuracy of the proposed model YOLO v5-CB was 98.6%, the mean average accuracy of the proposed scheme was 96.8%, and the F1 was 98%, which performed better than the Faster R-CNN, YOLO v3, YOLO v4 and YOLO v5. Using the improved model YOLO v5-CB, combined with the ecological environment collection equipment installed in Yanchi and Dashuikeng in Ningxia, a Web-based locust identification and detection platform was established, which had already been applied to grassland ecological environment data collection in Ningxia Yanchi Dashuikeng, Huangji Farm and Mahuang Mountain. This platform performed real-time tracking of locust in desert steppe of Ningxia, which can be further used for locust control in Ningxia. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬宏興,張淼,董凱兵,魏淑花,張蓉,王順霞.基于改進(jìn)YOLO v5的寧夏草原蝗蟲識(shí)別模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(11):270-279. MA Hongxing, ZHANG Miao, DONG Kaibing, WEI Shuhua, ZHANG Rong, WANG Shunxia. Research of Locust Recognition in Ningxia Grassland Based on Improved YOLO v5[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):270-279.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼