ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于探地雷達(dá)和深度學(xué)習(xí)的果樹根徑預(yù)測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(19)3087)和無錫市國際科技研發(fā)合作項(xiàng)目(CZE02H1706)


Root Diameter Prediction Method of Fruit Trees Based on Ground Penetrating Radar and Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對果樹根系相較于果樹枝干或冠層難以觀察和取樣的問題,,提出一種基于探地雷達(dá)和卷積神經(jīng)網(wǎng)絡(luò)的果樹根系半徑和深度預(yù)測方法,。首先,,使用開源軟件gprMax構(gòu)造所需的探地雷達(dá)A-Scan數(shù)據(jù)集,;然后,,將輸入數(shù)據(jù)導(dǎo)入注意力模塊,,對特征信息重新分配權(quán)重,突出關(guān)鍵特征對模型的影響,;最后,,通過卷積層提取特征信息,通過全連接層將前面卷積層所學(xué)到的局部特征綜合為A-Scan數(shù)據(jù)的全局特征,,完成對根系半徑和深度的準(zhǔn)確預(yù)測,。為了證明提出方法的可行性與有效性,,在仿真數(shù)據(jù)和實(shí)測數(shù)據(jù)上分別進(jìn)行實(shí)驗(yàn)。結(jié)果表明,,該方法可以實(shí)現(xiàn)對根系半徑和深度的有效預(yù)測,,其中,在仿真數(shù)據(jù)上對根系半徑預(yù)測的最大誤差為2.9mm,,R2為0.990,,均方根誤差為0.00068m,深度預(yù)測最大誤差為11.2mm,,R2為0.999,,均方根誤差為0.0020m;在實(shí)測數(shù)據(jù)上對根系半徑預(yù)測最大誤差為1.56mm,,深度預(yù)測最大誤差為9.90mm,,總平均相對誤差為5.83%,能夠?qū)崿F(xiàn)對根系半徑和深度的準(zhǔn)確預(yù)測,。

    Abstract:

    The size and depth of fruit tree roots can reflect the growth and health of fruit trees and affect the profits of the orchardist. However, the roots are more difficult to observe and sample than the subaerial parts of fruit trees, such as the tree trunk, branches, and crown. Ground penetrating radar (GPR), as an emerging non-destructive testing technology, has the advantages of simple operation and convenient carrying. However, using GPR to quantify the radius of the roots is still a challenging task. To that extent, a prediction method for tree root radius and depth was proposed based on GPR and convolutional neural networks. Firstly, the simulated one-dimensional data of ground penetrating radar (A-Scan) was used as the data set to train the model. Secondly, the attention mechanism allocated more weights to essential features, highlighting key features and speeding up convergence. Finally, the feature information was extracted through the convolutional layer. The local features learned by the previous convolutional layer were integrated into the global features of the A-Scan data through the fully connected layer to predict the root radius and depth accurately. The model was tested on simulation data and real data. In the simulation experiment, the maximum error of root radius prediction was 2.9mm, the coefficient of determination value was 0.990, the root mean square error was 0.00068m, the maximum error of root depth prediction was 11.2mm, the coefficient of determination value was 0.999, and the root mean square error was 0.0020m. In the field experiment, the maximum error of sample roots radius prediction was 1.56mm. The maximum error of sample roots depth prediction was 9.90mm. The total average relative error was 5.83%, indicating the proposed method’s efficacy for estimating the radius and depth of roots.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李光輝,王哲旭,徐匯,劉敏.基于探地雷達(dá)和深度學(xué)習(xí)的果樹根徑預(yù)測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(11):306-313,,348. LI Guanghui, WANG Zhexu, XU Hui, LIU Min. Root Diameter Prediction Method of Fruit Trees Based on Ground Penetrating Radar and Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):306-313,348.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-30
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼