ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于GAF-DenseNet的旋耕作業(yè)質(zhì)量等級(jí)識(shí)別模型
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700300)


Quality Indentification Model of Tractor Rotary Tillage Based on GAF-DenseNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)基于拖拉機(jī)多傳感器實(shí)測(cè)載荷數(shù)據(jù)的旋耕作業(yè)質(zhì)量準(zhǔn)確識(shí)別,提出一種基于GAF-DenseNet的拖拉機(jī)旋耕作業(yè)質(zhì)量等級(jí)識(shí)別模型,,設(shè)計(jì)旋耕作業(yè)質(zhì)量等級(jí)分級(jí)標(biāo)準(zhǔn),,開(kāi)展旋耕作業(yè)田間試驗(yàn),并進(jìn)行模型準(zhǔn)確性驗(yàn)證和性能分析,。該模型通過(guò)格拉姆角場(chǎng)(Gramian angular field, GAF)算法,,在保留原始載荷序列的時(shí)間依賴(lài)性的前提下,對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行唯一編碼,。DenseNet網(wǎng)絡(luò)對(duì)圖像陣列中內(nèi)含的載荷信息進(jìn)行深層挖掘,,通過(guò)特征重用、模型壓縮等技術(shù)環(huán)節(jié),,在保證特征提取深度的同時(shí),,顯著提升該網(wǎng)絡(luò)的運(yùn)算效率。分析結(jié)果表明:過(guò)大或過(guò)小的重采樣滑動(dòng)窗口大小均會(huì)降低模型性能,,且格拉姆角差場(chǎng)(Gramian angular difference field, GADF)實(shí)驗(yàn)效果強(qiáng)于格拉姆角和場(chǎng)(Gramian angular summation field, GASF),,實(shí)驗(yàn)數(shù)據(jù)顯示在重采樣滑動(dòng)窗口大小為250且選用格拉姆角差場(chǎng)的條件下,模型性能達(dá)到最優(yōu),。增長(zhǎng)率k與模型整體性能呈正相關(guān)的趨勢(shì),,但過(guò)大的k值會(huì)降低模型的實(shí)時(shí)性能且對(duì)于準(zhǔn)確性提升有限,實(shí)驗(yàn)場(chǎng)景下將增長(zhǎng)率k設(shè)為24更能符合實(shí)際需求。GAF-DenseNet模型準(zhǔn)確率和F1值分別達(dá)到96.816%和96.136%,,并且在實(shí)時(shí)性能上具有良好表現(xiàn),,推理時(shí)長(zhǎng)可低至16s。在與其他智能算法對(duì)比分析中,,該模型整體性能均優(yōu)于對(duì)照組實(shí)驗(yàn)結(jié)果,。

    Abstract:

    To achieve accurate prediction of rotary tillage quality based on tractor multi-sensor load data, a tractor rotary tillage quality identification model based on GAF-DenseNet was proposed, rotary tillage quality grading standard was designed, and field tests of rotary tillage were carried out, and model accuracy verification and performance analysis were conducted. The Gramian angular field (GAF) algorithm uniquely encoded the time series data while preserving the time dependence of the original load sequence. The DenseNet network deeply mined the load information embedded in the image array, and significantly improved the computing efficiency of this network while ensuring the depth of feature extraction through feature reuse, model compression, and other technical aspects. The analysis results showed that the model performance was reduced by either too large or too small a resampling sliding window size and the experimental effect of Gramian angular difference field (GADF) was stronger than Gramian angular summation field (GASF), and the experimental data showed that the model performance was optimal when the resampling sliding window size was 250 and the GADF algorithm was selected. The growth rate k tended to be positively correlated with the overall performance of the model, but too large a value of k reduced the real-time performance of the model and had limited improvement in accuracy, and the growth rate k was set to 24 in the experimental scenario to better meet the actual demand. The GAF-DenseNet model achieved accuracy and F1 value of 96.816% and 96.136%, respectively. It had good performance in real-time capability, and the interfence time can be as low as 16s. The overall performance of this model was better than the control group analysis results in the comparison tests with other intelligent algorithms.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李淑艷,李若晨,溫昌凱,萬(wàn)科科,宋正河,劉江輝.基于GAF-DenseNet的旋耕作業(yè)質(zhì)量等級(jí)識(shí)別模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(11):441-449. LI Shuyan, LI Ruochen, WEN Changkai, WAN Keke, SONG Zhenghe, LIU Jianghui. Quality Indentification Model of Tractor Rotary Tillage Based on GAF-DenseNet[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(11):441-449.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-12-27
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-11-10
  • 出版日期:
文章二維碼