ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于三維點(diǎn)云的群體櫻桃樹(shù)冠層去噪和配準(zhǔn)方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山東省自然科學(xué)基金項(xiàng)目(ZR2020MC084)


Denoising and Registration Method of Group Cherry Trees Canopy Based on 3D Point Cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    櫻桃樹(shù)的栽培密度影響其冠層的光照分布,通過(guò)研究群體櫻桃樹(shù)的三維結(jié)構(gòu),,可分析不同栽植密度下溫室甜櫻桃樹(shù)冠層光照分布規(guī)律,,指導(dǎo)櫻桃樹(shù)的科學(xué)種植,進(jìn)而提高甜櫻桃產(chǎn)量和品質(zhì),。高質(zhì)量的點(diǎn)云數(shù)據(jù)是構(gòu)建群體櫻桃樹(shù)三維結(jié)構(gòu)的基礎(chǔ),,而點(diǎn)云去噪和點(diǎn)云配準(zhǔn)是點(diǎn)云數(shù)據(jù)預(yù)處理的關(guān)鍵環(huán)節(jié)。本文提出一種基于三維點(diǎn)云的群體櫻桃樹(shù)去噪和配準(zhǔn)方法,,搭建群體櫻桃樹(shù)三維信息采集平臺(tái),,使用2臺(tái)固定的DK深度相機(jī)獲取群體櫻桃樹(shù)彩色點(diǎn)云數(shù)據(jù);提出基于顏色區(qū)域生長(zhǎng)的二分類(lèi)方法,設(shè)置顏色閾值分割點(diǎn)云并進(jìn)行二分類(lèi)處理,,可有效去除彩色點(diǎn)云數(shù)據(jù)中的異常無(wú)效點(diǎn),并設(shè)置點(diǎn)云離散度和RGB值,,作為點(diǎn)云去噪評(píng)價(jià)標(biāo)準(zhǔn),;結(jié)合人工標(biāo)記法和雙相機(jī)位姿矩陣,提出基于顏色特征改進(jìn)的ICP方法,,解決傳統(tǒng)ICP配準(zhǔn)算法多依賴(lài)初始位姿且配準(zhǔn)速度較慢的問(wèn)題,。該方法通過(guò)對(duì)點(diǎn)云粗配準(zhǔn),得到較好的初始位姿,,使用SIFT算法提取顏色特征點(diǎn),,將顏色特征與ICP算法結(jié)合進(jìn)行點(diǎn)云精配準(zhǔn),然后使用PCL中隨機(jī)采樣一致性算法,,去除錯(cuò)誤匹配點(diǎn),,有效減少配準(zhǔn)時(shí)間,提高配準(zhǔn)精度,。以夏季和冬季的群體櫻桃樹(shù)20組點(diǎn)云數(shù)據(jù)為實(shí)驗(yàn)對(duì)象,,對(duì)比分析ICP算法、NDT算法,、SAC-IA算法和本文配準(zhǔn)方法的配準(zhǔn)精度和配準(zhǔn)時(shí)間,,結(jié)果表明,本文配準(zhǔn)方法平均耗時(shí)分別為5.01,、4.30s,,均方根誤差分別為2.316、2.100cm,,有效減少了配準(zhǔn)時(shí)間和配準(zhǔn)誤差,,驗(yàn)證了本文算法的有效性和普適性。

    Abstract:

    The cultivation density of cherry trees affects the light distribution of their canopies. By studying the three-dimensional structure of group cherry trees, the light distribution of greenhouse sweet cherry trees under different planting densities can be analyzed, which can guide the scientific planting of cherry trees and improve the yield and quality of sweet cherry trees. High quality point cloud data was the basis of constructing the three-dimensional structure of the group cherry tree, and point cloud denoising and registration were the key steps of point cloud data preprocessing. A method for denoising and registration of group cherry trees based on 3D point cloud was proposed to build a 3D information acquisition platform for group cherry trees, and two fixed DK depth cameras were used to obtain the color point cloud data of group cherry trees. A binary classification method based on color region growth was proposed, and the color threshold was set to segment the point cloud and perform binary classification processing, which can effectively remove the abnormal invalid points in the color point cloud data, and set the dispersion of point cloud and RGB value as the evaluation standard of point cloud denoising. Combined with manual labeling method and dual camera pose matrix, an improved ICP method based on color features was proposed to solve the problem that traditional ICP registration algorithm depended on the initial pose and the registration speed was slow. SIFT algorithm was used to extract the color feature points, and the color feature points were combined with ICP algorithm for precise registration. Then the random sampling consistency algorithm in PCL was used to remove the wrong matching points, which effectively reduced the registration time and improved the registration accuracy. Taking 20 groups of group cherry tree point cloud data in summer and winter as experimental objects, the registration accuracy and registration time of ICP algorithm, NDT algorithm, SAC-IA algorithm and the proposed registration method were compared and analyzed. The results showed that the average registration time of the proposed registration method was 5.01s and 4.30s, respectively. The root mean square error was 2.316cm and 2.100cm respectively, which effectively reduced the registration time and registration error, and verified the effectiveness and universality of the proposed algorithm.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉剛,尹一涵,鄭智源,李云涵,梁樹(shù)樂(lè),靳晨.基于三維點(diǎn)云的群體櫻桃樹(shù)冠層去噪和配準(zhǔn)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s2):188-196. LIU Gang, YIN Yihan, ZHENG Zhiyuan, LI Yunhan, LIANG Shule, JIN Chen. Denoising and Registration Method of Group Cherry Trees Canopy Based on 3D Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s2):188-196.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-10
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2022-08-08
  • 出版日期:
文章二維碼