ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)Faster R-CNN的海參目標(biāo)檢測(cè)算法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32073029),、山東省自然科學(xué)基金重點(diǎn)項(xiàng)目(ZR2020KC027),、山東省研究生教育質(zhì)量提升計(jì)劃項(xiàng)目(SDYJG19134)、〖JP2〗國(guó)家留學(xué)基金項(xiàng)目(201908370048)和福建省海洋生物增養(yǎng)殖與高值化利用重點(diǎn)實(shí)驗(yàn)室開放課題(2021fjscq08)


Sea Cucumber Object Detection Algorithm Based on Improved Faster R-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    海參目標(biāo)檢測(cè)是實(shí)現(xiàn)海參自動(dòng)化捕撈的前提。為了解決復(fù)雜海底環(huán)境下背景和目標(biāo)顏色相近以及遮擋導(dǎo)致的目標(biāo)漏檢問(wèn)題,,本文在Faster R-CNN框架下,,提出了Swin-RCNN目標(biāo)檢測(cè)算法。該算法的骨干網(wǎng)絡(luò)采用Swin Transformer,,同時(shí)在結(jié)構(gòu)上融入了多尺度特征提取層和實(shí)例分割功能,,提高了算法的自適應(yīng)特征融合能力,從而提高了模型在復(fù)雜環(huán)境下對(duì)不同尺寸海參的識(shí)別能力,。實(shí)驗(yàn)結(jié)果表明:本文方法對(duì)海參檢測(cè)的平均精度均值(mAP)達(dá)到94.47%,,與Faster R-CNN、SSD,、YOLO v5,、YOLO v4、YOLO v3相比分別提高4.49,、4.56,、4.46、11.78,、22.07個(gè)百分點(diǎn),。

    Abstract:

    Sea cucumber object detection is the premise of realizing automatic fishing of sea cucumber. To solve the problem of missed object detection caused by occlusion and the color similarity between object and background in the complex seabed environment, Swin RCNN object detection algorithm was proposed under the framework of Faster R-CNN. The backbone network of the algorithm adopted the Swin Transformer, and the multi-dimensional feature extraction layer was integrated into the structure, which improved the adaptive feature fusion ability of the algorithm and improved the object recognition ability of the model for the different sizes of objects under occlusion in complex environments. The actual experimental results showed that the mean average precision achieved 94.47% for the detection of sea cucumbers by the proposed approach, which was increased by 4.49 percentage points, 4.56 percentage points, 4.46 percentage points, 11.78 percentage points, and 22.07 percentage points compared with Faster R-CNN, SSD, YOLO v5, YOLO v4, and YOLO v3, respectively. The research result had certain reference significance for object detection in other complex environments. Therefore, the study of sea cucumber object detection algorithm in complex seabed environment had important theoretical and application value, and also had guiding significance for intelligent identification of other marine products.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

熊海濤,林琪,宣魁,葛鳳麗,李娟.基于改進(jìn)Faster R-CNN的海參目標(biāo)檢測(cè)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2022,53(s2):204-209. XIONG Haitao, LIN Qi, XUAN Kui, GE Fengli, LI Juan. Sea Cucumber Object Detection Algorithm Based on Improved Faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(s2):204-209.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-15
  • 出版日期:
文章二維碼