ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于多源光學雷達數(shù)據(jù)融合的黃淮海平原冬小麥識別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家超級計算鄭州中心創(chuàng)新生態(tài)系統(tǒng)建設科技專項(201400210100)和國家自然科學基金項目(42001367)


Identification of Winter Wheat in Huang-Huai-Hai Plain Based on Multi-source Optical Radar Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    遙感技術能夠快速準確地獲取農作物空間分布信息,為探究2021年黃淮海平原冬小麥空間分布信息,,基于Google Earth Engine(GEE)云平臺,,以Sentinel-1 SAR雷達影像和Sentienl-2光學遙感影像為數(shù)據(jù)源,通過計算極化特征、光譜特征和紋理特征,,運用隨機森林等4種機器學習方法和深度循環(huán)神經網絡模型,,對研究區(qū)冬小麥空間分布信息進行提取,并對比各分類器和網絡架構的分類精度,。結果表明,,黃淮海平原冬小麥總面積約為16226667hm2,占研究區(qū)總面積的49.17%,,其中冬小麥種植面積最大的是河南省,,約為4647334hm2,研究區(qū)冬小麥種植分布呈現(xiàn)由東向西,、由南向北遞減的趨勢,;隨機森林是4種機器學習方法中識別精度最高的分類器,總體分類精度為94.30%,;在隨機森林算法中僅使用Sentinel-1雷達數(shù)據(jù)總體精度為87.38%,,僅使用Sentinel-2光學數(shù)據(jù)總體精度為93.95%,而融合時序Sentinel主被動遙感數(shù)據(jù)總體精度為94.30%,;在大范圍的冬小麥分類上,,深度學習模型的泛化性高于機器學習方法。

    Abstract:

    Current remote sensing technology can quickly and accurately obtain the spatial distribution information of crops. In order to explore the spatial distribution information of winter wheat in the Huang-Huai-Hai Plain in 2021, based on the Google Earth Engine (GEE) cloud platform. Sentinel-1 SAR radar image and Sentienl-2 optical remote sensing image were used as data sources, the spatial distribution information of winter wheat in the study area was extracted by computing polarization characteristics, spectral characteristics and texture characteristics, using four machine learning methods and deep learning network model. The classification accuracy of each classifier and network architecture was compared. The results showed that the total area of winter wheat in the Huang-Huai-Hai Plain was 16226667hm2, accounting for 49.17% of total area of the study area. The winter wheat planting area was the largest in Henan Province, accounting for 4647334hm2. The winter wheat planting distribution in the study area showed a decreasing trend from east to west and from south to north. Random forest was the classifier with the highest recognition accuracy among the four machine learning methods, with an overall classification accuracy of 94.30%. In the random forest algorithm, the overall accuracy of only using Sentinel-1 radar data was 87.38%, and the overall accuracy of only using Sentinel-2 optical data was 93.95%, while the overall accuracy of the fusion sequence Sentinel active and passive remote sensing data was 94.30%. In a wide range of winter wheat classification, the generalization of deep learning model was higher than that of machine learning.

    參考文獻
    相似文獻
    引證文獻
引用本文

馮權瀧,任燕,姚曉闖,牛博文,陳泊安,趙圓圓.基于多源光學雷達數(shù)據(jù)融合的黃淮海平原冬小麥識別[J].農業(yè)機械學報,2023,54(2):160-168. FENG Quanlong, REN Yan, YAO Xiaochuang, NIU Bowen, CHEN Boan, ZHAO Yuanyuan. Identification of Winter Wheat in Huang-Huai-Hai Plain Based on Multi-source Optical Radar Data Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):160-168.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-05-26
  • 出版日期:
文章二維碼