ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

融合注意力機制的開集豬臉識別方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京市自然科學基金項目(4202029)和北京市農(nóng)林科學院杰出科學家培育專項(JKZX202214)


Open-set Pig Face Recognition Method Combining Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對閉集豬臉識別模型無法識別訓練集中未曾出現(xiàn)的生豬個體的問題,,本文設計了一種融合注意力機制的開集豬臉識別方法,可實現(xiàn)開集豬臉圖像識別,,識別模型從未處理過的生豬個體,。首先基于全局注意力機制、倒置殘差結構和深度可分離卷積構建了輕量級的特征提取模塊(GCDSC),;然后基于高效注意力機制,、Ghost卷積和殘差網(wǎng)絡設計C3ECAGhost模塊,提取豬臉圖像高層語義特征,;最后基于MobileFaceNet網(wǎng)絡,融合GCDSC模塊,、C3ECAGhost模塊,、SphereFace損失函數(shù)和歐氏距離度量方法,構建PigFaceNet模型,,實現(xiàn)開集豬臉識別,。實驗結果表明,GCDSC模塊可使模型豬臉識別的準確率提高1.05個百分點,,C3ECAGhost模塊可將模型準確率進一步提高0.56個百分點,。PigFaceNet模型在開集豬臉識別驗證中的準確率可達94.28%,比改進前提高1.61個百分點,,模型占用存儲空間僅為5.44MB,,在提高準確率的同時實現(xiàn)了模型輕量化,可為豬場智慧化養(yǎng)殖提供參考方案,。

    Abstract:

    To solve the problem that the closed-set pig face recognition model cannot recognize pig individuals that have not appeared in the training set, an open-set pig face recognition method that integrated attention mechanism was proposed, which can realize open-set pig face image recognition and recognize pig individuals that the model had never seen. Firstly, a lightweight feature extraction module (GCDSC) was constructed based on a global attention mechanism, inverted residual structure, and depth separable convolution. Secondly, C3ECAGhost module was designed based on efficient attention mechanism, Ghost convolution, and residual network to extract high-level semantic features of pig face images. Finally, based on the MobileFaceNet network, incorporating GCDSC module, C3ECAGhost module, SphereFace loss function, and Euclidean distance measurement method, the model PigFaceNet was constructed to realize open-set pig face recognition. The experimental results showed that the GCDSC module can improve the accuracy of pig face recognition by 1.05 percentage points, and the C3ECAGhost module can further improve the accuracy of the model by 0.56 percentage points. The accuracy of the PigFaceNet model in open-set pig face recognition verification can reach 94.28%, which was 1.61 percentage points higher than that before modification. The model proposed was a lightweight model with 5.44MB parameters, which can improve the accuracy and provide a reference for intelligent breeding of pig farms.

    參考文獻
    相似文獻
    引證文獻
引用本文

王榮,高榮華,李奇峰,劉上豪,于沁楊,馮璐.融合注意力機制的開集豬臉識別方法[J].農(nóng)業(yè)機械學報,2023,54(2):256-264. WANG Rong, GAO Ronghua, LI Qifeng, LIU Shanghao, YU Qinyang, FENG Lu. Open-set Pig Face Recognition Method Combining Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):256-264.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-12-22
  • 出版日期:
文章二維碼