ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于空間注意力和可變形卷積的無人機(jī)田間障礙物檢測(cè)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32001424,、31971798),、深圳市科技計(jì)劃項(xiàng)目(JCYJ20210324102401005)、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022YFD2202103),、浙江省“領(lǐng)雁”研發(fā)攻關(guān)計(jì)劃項(xiàng)目(2022C02057)和浙江省“三農(nóng)九方”科技協(xié)作計(jì)劃項(xiàng)目(2022SNJF017)


UAV Field Obstacle Detection Based on Spatial Attention and Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了解決植保無人機(jī)作業(yè)時(shí),,傳統(tǒng)田間障礙物識(shí)別方法依賴人工提取特征,計(jì)算耗時(shí)較長,,難以實(shí)現(xiàn)在非結(jié)構(gòu)化田間環(huán)境下實(shí)時(shí)作業(yè)識(shí)別的問題,,提出一種優(yōu)化的Mask R-CNN模型的非結(jié)構(gòu)化農(nóng)田障礙物實(shí)例分割方法。以ResNet-50殘差網(wǎng)絡(luò)為基礎(chǔ),,將空間注意力(Spatial attention, SA)引入殘差結(jié)構(gòu),,聚焦跟蹤目標(biāo)的顯著性表觀特征并主動(dòng)抑制噪聲等無用特征的影響;引入可變形卷積(Deformable convolution, DCN),,通過加入偏移量,,增大感受野,提高模型的魯棒性,。構(gòu)建包含農(nóng)田典型障礙物的數(shù)據(jù)集,,通過對(duì)比試驗(yàn)研究在ResNet殘差網(wǎng)絡(luò)結(jié)構(gòu)中的不同階段中加入空間注意力和可變形卷積時(shí)的模型性能差異。結(jié)果表明,,與Mask R-CNN原型網(wǎng)絡(luò)相比,,在ResNet的階段2,、階段3,、階段5加入空間注意力和可變形卷積后,改進(jìn)Mask R-CNN的邊界框(Bbox)和掩膜(Mask)的平均精度均值(mAP)分別從64.5%,、56.9%提高到71.3%,、62.3%。本文提出的改進(jìn)Mask R-CNN可以很好地實(shí)現(xiàn)農(nóng)田障礙物檢測(cè),,可為植保無人機(jī)在非結(jié)構(gòu)化農(nóng)田環(huán)境下安全高效工作提供技術(shù)支撐,。

    Abstract:

    In order to solve the problem that the traditional field obstacle recognition methods rely on manual feature extraction, long calculation time, and it's difficult to achieve real-time recognition in unstructured field environment, an optimized unstructured field obstacle instance segmentation method based on Mask R-CNN model was proposed. Firstly, an unstructured field obstacle dataset was constructed by aerial photography and network search. And then based on the ResNet-50 residual network, the spatial attention was introduced to focus on the significant apparent features of the tracking target, and the influence of useless features such as noise was suppressed. In addition, the deformable convolution was introduced into the structure of the ResNet-50 to add the offset, increase the receptive field and improve the robustness of the model. Comparative analysis was made by adding spatial attention and deformable convolution to different stages in the structure of ResNet-50. The results showed that compared with the original Mask R-CNN model, the mAP values of Bbox and Mask in Mask R-CNN improved by adding spatial attention and deformable convolution in Stage 2, Stage 3 and Stage 5 of the ResNet-50 were increased from 64.5% and 56.9% to 71.3% and 62.3%, respectively. The improved Mask R-CNN can well realize field obstacle detection and provide technical support for plant protection UAV to work safely and efficiently in unstructured field environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

杜小強(qiáng),李卓林,馬锃宏,楊振華,王大帥.基于空間注意力和可變形卷積的無人機(jī)田間障礙物檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):275-283. DU Xiaoqiang, LI Zhuolin, MA Zenghong, YANG Zhenhua, WANG Dashuai. UAV Field Obstacle Detection Based on Spatial Attention and Deformable Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):275-283.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-06-01
  • 出版日期:
文章二維碼