ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SSA-LSTM的日光溫室環(huán)境預(yù)測(cè)模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

山東省農(nóng)業(yè)重大應(yīng)用技術(shù)創(chuàng)新項(xiàng)目(SD2019ZZ019),、山東省科技型中小企業(yè)創(chuàng)新能力提升工程項(xiàng)目(2022TSGC2047)和山東省重大科技創(chuàng)新工程項(xiàng)目(2022CXGC020708)


Solar Greenhouse Environment Prediction Model Based on SSA-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    構(gòu)建日光溫室環(huán)境預(yù)測(cè)模型,,準(zhǔn)確預(yù)測(cè)溫室環(huán)境變化有助于精準(zhǔn)調(diào)控作物生長(zhǎng)環(huán)境,促進(jìn)果蔬生長(zhǎng),。而溫室小氣候環(huán)境數(shù)據(jù)多參數(shù)并存,、耦合關(guān)系復(fù)雜,且具有時(shí)序性和非線性,,難以建立準(zhǔn)確的預(yù)測(cè)模型,。針對(duì)以上問(wèn)題,提出一種基于麻雀搜索算法(SSA)優(yōu)化的長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)溫室環(huán)境預(yù)測(cè)模型,,實(shí)現(xiàn)了溫室環(huán)境數(shù)據(jù)的精準(zhǔn)預(yù)測(cè),。實(shí)驗(yàn)結(jié)果表明,采用SSA自動(dòng)進(jìn)行參數(shù)選優(yōu)的方式,,解決了LSTM模型參數(shù)手動(dòng)選擇的難題,,大幅縮短模型訓(xùn)練時(shí)間,且最優(yōu)的網(wǎng)絡(luò)參數(shù)能夠發(fā)揮模型的最佳性能,。對(duì)日光溫室內(nèi)空氣溫濕度,、土壤溫濕度、CO2濃度和光照強(qiáng)度6種環(huán)境參數(shù)進(jìn)行預(yù)測(cè),,SSA-LSTM平均擬合指數(shù)高達(dá)97.6%,,相比BP、門(mén)控循環(huán)單元(GRU),、LSTM,,其預(yù)測(cè)擬合指數(shù)分別提升8.1、4.1,、4.3個(gè)百分點(diǎn),,預(yù)測(cè)精度明顯提升。

    Abstract:

    The accurate prediction of greenhouse environment variation based on the constructed prediction model is helpful to precisely regulate the crop environment, and promote the growth of fruits and vegetables. Due to the coexistence of multiple parameters, complex coupling with each other, temporality and nonlinearity of greenhouse microclimate environment, the accurate prediction model is difficult to establish. Based on above issues, a greenhouse environment prediction model was proposed based on the sparrow search algorithm (SSA) optimized-long short term memory (LSTM) neural network method, so as to realize the prediction of greenhouse environment data sequence with the Internet of things (IoT) collecting accurate multipoint environment data. The experimental results showed that the automatic parametric optimization process by SSA could deal with the time consuming problem of manual parameter selection for the LSTM model. The proposed SSA-LSTM method could lower the model training time, and the optimal parameters selection could make sure the model worked with the optimum capability. The trained SSA-LSTM model was used to predict six kinds of greenhouse environment data, including the air temperature, air humidity, soil temperature, soil humidity, CO2 concentration, and the illumination intensity. The proposed SSA-LSTM could realize a 97.6% average prediction fit index, compared with the back-propagation network, the gated recurrent unit neural network and the LSTM, the prediction fit index was elevated by 8.1 percentage points, 4.1 percentage points and 4.3 percentage points. Therefore, the prediction accuracy of SSA-LSTM was obviously improved. The research result could provide reference for the development of greenhouse environment control strategy and deal with the lag problem of environment control.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

祖林祿,柳平增,趙妍平,李天華,李輝.基于SSA-LSTM的日光溫室環(huán)境預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):351-358. ZU Linlu, LIU Pingzeng, ZHAO Yanping, LI Tianhua, LI Hui. Solar Greenhouse Environment Prediction Model Based on SSA-LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):351-358.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-03-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-04-18
  • 出版日期:
文章二維碼