ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機多光譜影像的柑橘冠層葉綠素含量反演
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41871226),、國家重點研發(fā)計劃政府間國際科技創(chuàng)新合作項目(2021YFE0194700),、重慶市高技術(shù)產(chǎn)業(yè)重大產(chǎn)業(yè)技術(shù)研發(fā)項目(D2018-82)和重慶市教委重點合作項目(HZ2021008)


Estimation of Citrus Canopy Chlorophyll Based on UAV Multispectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    葉綠素是一種反映植物生長水平和健康狀況的重要生理生化指標,,為快速,、無損地大規(guī)模獲取柑橘冠層的葉綠素含量以精確指導果園管理,,利用多旋翼無人機搭載多光譜傳感器獲取多波段反射率數(shù)據(jù),,使用多光譜陰影指數(shù)對冠層陰影和土壤背景進行剔除,計算得到植被指數(shù)與紋理特征,,將地面實測的葉綠素含量作為驗證,,綜合對比了全子集回歸、偏最小二乘回歸和深層神經(jīng)網(wǎng)絡(luò)的反演精度以選取最優(yōu)模型,。結(jié)果表明,,植被指數(shù)與葉綠素含量的相關(guān)性良好,;將僅使用植被指數(shù)與僅使用紋理特征的建模結(jié)果進行對比,僅使用紋理特征的模型在全子集回歸和偏最小二乘回歸的反演精度均有明顯提升,;結(jié)合植被指數(shù)與紋理特征共同建模后,,全子集回歸和偏最小二乘回歸的反演精度相比僅使用紋理特征的模型均能獲得提升;深層神經(jīng)網(wǎng)絡(luò)因其良好的非線性擬合能力,,獲得了最高的反演精度,,R2、MAE,、RMSE分別為0.665,、7.69mg/m2、9.49mg/m2,,成為本文最優(yōu)模型,。本研究利用無人機多光譜影像反演得到柑橘冠層葉綠素含量,為實現(xiàn)柑橘生長監(jiān)測提供指導作用,。

    Abstract:

    Chlorophyll is an important physiological and biochemical indicator that reflects the growth level and health status of plants, how to obtain the chlorophyll content of citrus canopy quickly and nondestructively on a large scale which can accurately guide orchard management has become an urgent problem. A multi-rotor UAV DJI M600Pro with a multispectral sensor Sequoia manufactued by Parrot was used, which had four bands, including green, red, red edge and near infrared to acquire multi-band reflectance data, after removing the canopy shading and soil background by using normalized difference canopy shadow index, the vegetation index and texture characteristics were calculated. With the ground-truthed chlorophyll content values collected by handheld chlorophyll meter CCM-300 manufactured by OPTI-SCIENCES as validation, the inversion accuracy of full subset regression, partial least squares regression and deep neural network was compared to select the optimal model. The results showed that the correlation between vegetation index and chlorophyll content was high. Comparing the modeling results using only vegetation index with those using only texture features, the inversion accuracy of full subset regression and partial least squares regression of the model using only texture features was significantly improved and the inversion accuracy of full subset regression and partial least squares regression could be improved by introducing both vegetation index and texture features. The deep neural network which had 46 input units, 4 hidden layers and 1 output unit obtained the highest inversion accuracy with R2, MAE, and RMSE of 0.665, 7.69mg/m2, and 9.49mg/m2, respectively, due to its good nonlinear fitting ability, it was selected as the optimal model. The research used UAV multispectral images to obtain citrus canopy chlorophyll content by inversion, which was of practical significance for monitoring citrus growth status.

    參考文獻
    相似文獻
    引證文獻
引用本文

羅小波,謝天授,董圣賢.基于無人機多光譜影像的柑橘冠層葉綠素含量反演[J].農(nóng)業(yè)機械學報,2023,54(4):198-205. LUO Xiaobo, XIE Tianshou, DONG Shengxian. Estimation of Citrus Canopy Chlorophyll Based on UAV Multispectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):198-205.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-18
  • 出版日期:
文章二維碼