ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)RDN網(wǎng)絡(luò)的無(wú)人機(jī)茶葉圖像超分辨率重建
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

安徽省自然科學(xué)基金項(xiàng)目(2208085MC60),、國(guó)家自然科學(xué)基金項(xiàng)目(62273001),、安徽省高等學(xué)校自然科學(xué)研究重大項(xiàng)目(KJ2020ZD03)、安徽省中央引導(dǎo)地方科技發(fā)展專項(xiàng)(202107d06020001)和安徽省高校研究生科學(xué)研究項(xiàng)目(YJS20210013)


Super-resolution Reconstruction of Unmanned Aerial Vehicle Tea Images Based on Improved RDN Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)無(wú)人機(jī)搭建可見(jiàn)光傳感器進(jìn)行茶葉長(zhǎng)勢(shì),、病害等監(jiān)測(cè)中因飛行高度影響圖像分辨率的問(wèn)題,,本文提出了一種改進(jìn)的殘差密集網(wǎng)絡(luò)(Residual dense network,,RDN)用于無(wú)人機(jī)茶葉圖像超分辨率重建。針對(duì)無(wú)人機(jī)茶葉圖像紋理復(fù)雜的特點(diǎn),,以RDN為基線網(wǎng)絡(luò),,在其結(jié)構(gòu)中引入了殘差組(Residual group,RG)模塊,,將多個(gè)殘差通道注意力模塊(Residual channel attention block,,RCAB)組合在一起,通過(guò)引入注意力機(jī)制來(lái)區(qū)別對(duì)待不同的通道,,關(guān)注無(wú)人機(jī)茶葉圖像高頻細(xì)節(jié)信息,從而提高網(wǎng)絡(luò)的表征能力,;同時(shí)設(shè)計(jì)了一個(gè)卷積長(zhǎng)跳躍結(jié)構(gòu),,利用帶有卷積的遠(yuǎn)程跳躍連接,動(dòng)態(tài)調(diào)整經(jīng)過(guò)殘差密集塊(Residual dense block,,RDB)后特征的權(quán)重,,更好地利用無(wú)人機(jī)茶葉圖像的分層特征信息,從而提升超分辨率重建圖像的質(zhì)量,。實(shí)驗(yàn)結(jié)果表明,,本文改進(jìn)的RDN網(wǎng)絡(luò)在無(wú)人機(jī)茶葉圖像測(cè)試集上相較于其他算法表現(xiàn)更優(yōu),超分辨率重建后的圖像具有更高的峰值信噪比和結(jié)構(gòu)相似度,,在4倍超分的情況下分別達(dá)到36.03dB和0.9132,,能夠?yàn)椴枞~智能化監(jiān)測(cè)研究提供支持。

    Abstract:

    It is a relatively economical, flexible and time-effective method to build a visible light sensor for monitoring of tea growth and diseases, but the resolution of the image will be affected by the flying height of the UAV. Therefore, an improved residual dense network (RDN) for super-resolution reconstruction of UAV tea images was proposed. Specifically, in view of the complex texture of UAV tea images, taking RDN as the baseline network, residual group (RG) was introduced into its structure, combining multiple residual channel attention modules were combined together to treat different channels differently by introducing an attention mechanism, and paying attention to the high-frequency detail information of UAV tea images, thereby improving the representation ability of the network; at the same time, a convolutional long jump structure was designed, using the longrange skip connection with convolution, to dynamically adjust the weight of the feature after passing through the residual dense block (RDB), and making better use of the hierarchical feature information of the UAV tea image, thereby improving the super-resolution of the quality of reconstructed image. The experimental results showed that the improved RDN network performed better than other algorithms on the test set of UAV tea images, and the super-resolution reconstructed images had higher peak signal-to-noise ratio and structural similarity. In the case of quadruple super resolution, it can reach 36.03dB and 0.9132, respectively, which can provide support for the followup research of tea intelligent monitoring.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鮑文霞,吳育桉,胡根生,楊先軍,汪振宇.基于改進(jìn)RDN網(wǎng)絡(luò)的無(wú)人機(jī)茶葉圖像超分辨率重建[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(4):241-249. BAO Wenxia, WU Yu'an, HU Gensheng, YANG Xianjun, WANG Zhenyu. Super-resolution Reconstruction of Unmanned Aerial Vehicle Tea Images Based on Improved RDN Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):241-249.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-25
  • 出版日期:
文章二維碼