ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLACT的果樹葉墻區(qū)域?qū)崟r(shí)檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31801782)和河北省自然科學(xué)基金項(xiàng)目(C2020204055)


Real-time Detection Method of Fruit Leaf Wall Area Based on Improved YOLACT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決果園因農(nóng)藥過量使用導(dǎo)致的環(huán)境污染與農(nóng)藥浪費(fèi)問題,,提出了一種基于改進(jìn)YOLACT的果樹葉墻區(qū)域(Leaf wall area,,LWA)實(shí)時(shí)檢測方法,,用于計(jì)算深度-彩色雙目相機(jī)采集視頻中的葉墻區(qū)域距離及密度,,為果園農(nóng)藥智慧噴施作業(yè)中農(nóng)藥噴灑劑量與噴灑距離的實(shí)時(shí)調(diào)整提供依據(jù),。首先,,使用ConvNeXt主干網(wǎng)絡(luò)改進(jìn)了YOLACT模型,,并引入NAM通道注意力機(jī)制對模型進(jìn)行了優(yōu)化;其次,,提出了基于深度學(xué)習(xí)的果樹葉墻密度檢測方法,;最后,通過閾值法排除深度圖像中的干擾信息,,簡化了果樹葉墻平均距離計(jì)算方法的處理流程,。實(shí)驗(yàn)結(jié)果表明,改進(jìn)YOLACT模型分割的APall為91.6%,,相較于原始模型上升3.0個(gè)百分點(diǎn),,與YOLACT++、Mask R-CNN和QueryInst模型相比分別高2.9,、1.2,、4.1個(gè)百分點(diǎn);葉墻密度估計(jì)算法在葉墻頂部,、中部和底部的均方根誤差(Root mean square error,,RMSE)分別為1.49%、0.82%,、2.20%,;葉墻區(qū)域?qū)崟r(shí)檢測方法的處理速度可達(dá)29.96f/s。

    Abstract:

    To reduce the environmental pollution and pesticide waste in orchards, a real-time method to detect the fruit tree leaf wall area (LWA) based on the improved YOLACT model was proposed to estimate average distance and density in the videos that captured by depth-color binocular camera, which can provide data for the real-time adjustment of pesticide spraying dose and spraying distance on intelligence pesticide spraying. Firstly, the YOLACT model was improved by using the ConvNeXt backbone network, and the NAM channel attention mechanism was introduced to optimize the model. Secondly, a leaf wall density estimation method based on deep learning was proposed. Finally, the average distance calculation method of LWA was proposed by excluding the interference information in the depth image through the threshold algorithm to simplify processing flow. The experimental results showed that the segmentation APall metrics of the improved YOLACT model was 91.6%, which was increased by 3.0 percentage points compared with that of the original model, and 2.9 percentage points, 1.2 percentage points and 4.1 percentage points compared with that of YOLACT++, Mask R-CNN, and QueryInst. The root mean square error (RMSE) of the leaf wall density estimation method was 1.49%, 0.82% and 2.20%. And the processing speed of the realtime LWA detection method could reach 29.96f/s.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖珂,梁聰哲,夏偉光.基于改進(jìn)YOLACT的果樹葉墻區(qū)域?qū)崟r(shí)檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(4):276-284. XIAO Ke, LIANG Congzhe, XIA Weiguang. Real-time Detection Method of Fruit Leaf Wall Area Based on Improved YOLACT[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):276-284.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-31
  • 出版日期:
文章二維碼