ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5s的奶山羊面部識(shí)別方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省農(nóng)業(yè)科技創(chuàng)新驅(qū)動(dòng)項(xiàng)目(NYKJ-2021-YL(XN)48)


Face Recognition Method of Dairy Goat Based on Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為準(zhǔn)確高效地實(shí)現(xiàn)無(wú)接觸式奶山羊個(gè)體識(shí)別,,以圈養(yǎng)環(huán)境下奶山羊面部圖像為研究對(duì)象,,提出一種基于改進(jìn)YOLO v5s的奶山羊個(gè)體識(shí)別方法。首先,,從網(wǎng)絡(luò)上隨機(jī)采集350幅羊臉圖像構(gòu)成羊臉面部檢測(cè)數(shù)據(jù)集,,使用遷移學(xué)習(xí)思想預(yù)訓(xùn)練YOLO v5s模型,使其能夠檢測(cè)羊臉位置,。其次,,構(gòu)建包含31頭奶山羊3844幅不同生長(zhǎng)期的面部圖像數(shù)據(jù)集,基于預(yù)訓(xùn)練的YOLO v5s,,在特征提取層中引入SimAM注意力模塊,,增強(qiáng)模型的學(xué)習(xí)能力,并在特征融合層引入CARAFE上采樣模塊以更好地恢復(fù)面部細(xì)節(jié),,提升模型對(duì)奶山羊個(gè)體面部的識(shí)別精度,。實(shí)驗(yàn)結(jié)果表明,改進(jìn)YOLO v5s模型平均精度均值為97.41%,,比Faster R-CNN,、SSD、YOLO v4模型分別提高6.33,、8.22,、15.95個(gè)百分點(diǎn),比YOLO v5s模型高2.21個(gè)百分點(diǎn),,改進(jìn)模型檢測(cè)速度為56.00f/s,,模型內(nèi)存占用量為14.45MB。本文方法能夠準(zhǔn)確識(shí)別具有相似面部特征的奶山羊個(gè)體,為智慧養(yǎng)殖中的家畜個(gè)體識(shí)別提供了一種方法支持,。

    Abstract:

    In order to accurately and efficiently realize the contactless individual identification of dairy goats, a dairy goat individual identification method based on improved YOLO v5s was proposed by taking the facial images of dairy goats in captive environment as the research object. Firstly, totally 350 sheep face images were randomly collected from the network to form a sheep face facial detection dataset, and the YOLO v5s model was pre-trained by using the transfer learning idea to enable it to detect sheep face positions. Secondly, a facial image dataset was constructed, containing 3844 different growth stages of 31 dairy goats, based on pretrained YOLO v5s, SimAM attention module was introduced in the feature extraction layer to enhance the learning ability of the model, and CARAFE was introduced in the feature fusion layer. The sampling module can better restore facial details and improve the recognition accuracy of the model for individual faces of dairy goats. The experimental results showed that the average accuracy of the improved YOLO v5s model was 97.41%, which was 6.33 percentage points, 8.22 percentage points and 15.95 percentage points higher than that of the Faster R-CNN, SSD and YOLO v4 models, respectively, and 2.21 percentage points higher than that of the original YOLO v5s model. The detection speed of the improved model was 56.00f/s, and the model size was 14.45MB. The method proposed can accurately identify dairy goat individuals with similar facial features, which provided a method support for the identification of livestock individuals in smart farming.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

寧紀(jì)鋒,林靖雅,楊蜀秦,王勇勝,藍(lán)賢勇.基于改進(jìn)YOLO v5s的奶山羊面部識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(4):331-337. NING Jifeng, LIN Jingya, YANG Shuqin, WANG Yongsheng, LAN Xianyong. Face Recognition Method of Dairy Goat Based on Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):331-337.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-08-12
  • 出版日期:
文章二維碼