ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于機器學習的雞,、牛骨顆粒Micro-CT原位可視化鑒別
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

財政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)(奶牛)產(chǎn)業(yè)技術體系建設專項(CARS-36)和教育部創(chuàng)新團隊發(fā)展計劃項目(IRT1293)


Machine Learning Based 3D in Situ Visual Discriminant Analysis of Mammalian and Non-mammalian Bone Meals by Micro-CT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    不同種屬動物源肉骨粉的快速鑒別分析技術是加強飼料監(jiān)管、防范瘋牛病傳播的重要保障,。為了探索使用顯微X射線計算機斷層成像技術(Micro-computed tomography, Micro-CT)快速鑒別分析不同種屬動物源肉骨粉的可行性,,本研究以制備的哺乳動物源牛骨顆粒和非哺乳動物源雞骨顆粒各100個作為樣品集,以不同相對位置雞,、牛骨顆粒以及雞骨顆粒中牛骨顆粒質量分數(shù)約0.97%分別制備驗證集,,使用Bruker Skyscan 1275 Micro-CT對所有樣品進行掃描和圖像重構(管電壓80kV、管電流125μA,,圖像分辨率10μm,,重構灰度圖像灰度階為0~255,對應X射線吸收系數(shù)為0~0.035),;提取不同骨顆粒樣品的感興趣區(qū)域進行圖像分割,,并結合PLS-DA和SVM-DA機器學習算法分別構建雞和牛骨顆粒分割模型。研究結果表明,,雞,、牛骨顆粒圖像分割感興趣區(qū)域灰度區(qū)間為165~255,基于PLS-DA和SVM-DA模型的雞,、牛骨顆粒鑒別交互驗證總準確率均為94%,,驗證集樣品的Micro-CT三維原位可視化表征結果經(jīng)驗證與樣品實際結果一致。結果表明,,Micro-CT結合PLS-DA和SVM-DA機器學習算法進行哺乳和非哺乳動物源骨顆粒的鑒別分析是可行的,。本研究為不同種屬動物源飼料的快速、無損鑒別提供了新的三維原位可視化表征手段,。

    Abstract:

    Rapid discriminant analysis of meat and bone meal from different animal origin species is an important guarantee to strengthen feed supervision and prevent the spread of BSE disease. In order to explore the feasibility of using advanced micro-computed tomography (Micro-CT) to rapidly identify and analyze meat and bone meal from different species of animals, a calibration sample set and two validation sample sets consisted of different amount of avian origin and bovine bone particles were prepared. The Bruker Skyscan 1275 Micro-CT system was used to build method for 3D in situ visual characterization. The Micro-CT conditions for sample scaning and images reconstructing were: tube voltage of 80kV, tube current of 125μA, image resolution of 10μm, reconstructed gray-scale image of from 0 to 255, and the corresponding X-ray absorption coefficient was from 0 to 0.035. The regions of interest of different bone particle samples were extracted for image segmentation. Combined with PLS-DA and SVM-DA machine learning algorithms, avian origin and bovine origin bone particle image segmentation models were constructed, respectively. Finally, the Micro-CT in situ 3D visual discriminant analysis of avian origin and bovine bone particles were carried out. The main results were as follows: the gray range of the regions of interest for image segmentation of chicken and bovine bone particles was 165~255. The total accuracy of cross validation of chicken and bovine bone particles based on PLS-DA and SVM-DA models was 94%. The Micro-CT 3D in situ visualization results of the verification set samples were verified to be consistent with the actual results of the samples. The verification results showed that the established Micro-CT 3D in situ visual discriminant analysis method achieved very consistent results with that of the actual samples. The research result can provide an imaging methodology for 3D in situ visual discriminant analysis for rapid and non-invasive identification of different species of animal origin material in feed.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱瀛,高冰,史卓林,解茹越,劉賢,韓魯佳.基于機器學習的雞,、牛骨顆粒Micro-CT原位可視化鑒別[J].農(nóng)業(yè)機械學報,2023,54(4):394-398,438. ZHU Ying, GAO Bing, SHI Zhuolin, XIE Ruyue, LIU Xian, HAN Lujia. Machine Learning Based 3D in Situ Visual Discriminant Analysis of Mammalian and Non-mammalian Bone Meals by Micro-CT[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(4):394-398,438.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-06-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2022-07-14
  • 出版日期:
文章二維碼