ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于作物生長模型與機器學(xué)習(xí)算法的區(qū)域冬小麥估產(chǎn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金面上項目(41721333),、河南省哲學(xué)社會科學(xué)規(guī)劃項目(2022BJJ026,、2021BJJ062)和河南城建學(xué)院大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃專項(202211765012、202211765018)


Regional Winter-wheat Yield Estimation Based on Coupling of Machine Learning Algorithm and Crop Growth Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為精準(zhǔn),、高效,、實時地實現(xiàn)區(qū)域冬小麥產(chǎn)量估算,以河南省鶴壁市淇縣橋盟鄉(xiāng)石橋村為研究區(qū),,基于分辨率10m的Sentinel-2多時相光學(xué)遙感影像,,利用集合卡爾曼濾波(Ensemble Kalman filter,EnKF)算法同化PROSAIL輻射傳輸模型反演的多期葉面積指數(shù)(Leaf area index,,LAI)到PyWOFOST作物生長模型中實現(xiàn)一定數(shù)量不同長勢單點產(chǎn)量的估測,,最后利用建立的機器學(xué)習(xí)模型和面域數(shù)據(jù)反演區(qū)域冬小麥產(chǎn)量,實現(xiàn)作物生長模型與機器學(xué)習(xí)算法的應(yīng)用耦合及一種新的區(qū)域冬小麥估產(chǎn)模式,。研究基于Sobol參數(shù)敏感性分析法量化對貯藏器官總干重質(zhì)量(Total dry weight of storage organs,,TWSO)與LAImax的敏感性參數(shù),并基于反演的多期LAI和粒子群優(yōu)化(Particle swarm optimization,,PSO)算法優(yōu)化與LAImax相關(guān)的TDWI,、TBASE、CVS,、CVL敏感性參數(shù),,將其輸入到PyWOFOST模型中,利用EnKF算法和時序LAI數(shù)據(jù)調(diào)整對TWSO相關(guān)的AMAXTB1、TDWI,、TSUMEM,、CVO敏感性參數(shù),實現(xiàn)單點產(chǎn)量的估算,;與實測單點產(chǎn)量相比,,該方法估算的R2、RMSE,、MAE、Bias分別為0.8665,、468.64kg/hm2,、385.70kg/hm2和103.08,為建立隨機森林回歸(Random forest regression,,RFR)區(qū)域估產(chǎn)算法提供準(zhǔn)確的單點產(chǎn)量訓(xùn)練數(shù)據(jù),。針對研究區(qū)(309.32hm2),基于不同長勢人工樣點產(chǎn)量數(shù)據(jù)建立的RFR區(qū)域估產(chǎn)算法,,區(qū)域估產(chǎn)精度為99.44%,,每公頃算法運行用時1.55s;應(yīng)用EnKF算法同化多時期面域LAI到PyWOFOST作物生長模型中的區(qū)域估產(chǎn)精度為89.01%,,每公頃算法運行用時約0.47h,;耦合PyWOFOST作物生長模型與RFR機器學(xué)習(xí)算法的區(qū)域估產(chǎn)精度達到95.58%,每公頃算法運行用時8.85s(訓(xùn)練數(shù)據(jù)的單點產(chǎn)量計算占總時長約81.35%),,顯著降低機器學(xué)習(xí)算法所需的人工成本和同化變量過程計算的時間及算力成本,。研究結(jié)果為準(zhǔn)確、快速的大區(qū)域作物估產(chǎn)提供理論支持和技術(shù)參考,。

    Abstract:

    To realize the regional winter wheat yield estimation accurately, efficiently and in real-time, Shiqiao Village, Qi County, Hebi City, Henan Province, was taken as the study area. The ensemble Kalman filter (EnKF) was used to assimilate the time-series leaf area index (LAI),,which were estimated by the PROSAIL radiation transfer model, into PyWOFOST crop growth model to estimate a certain number of winter wheat site yield points with different growth. And those site yield points provided training data for random forest regression (RFR) algorithm to establish machine learning model. Finally, the established machine learning model and the time-series optical remote sensing images of Sentinel-2 with 10m resolution were used to estimate the regional winter wheat yield, so as to realize the application of coupling crop growth model and machine learning algorithm, and establish a new regional winter wheat yield estimation mode. Based on Sobol parameter sensitivity analysis algorithm, the sensitivity parameters of TWSO and LAImax were quantified. The TDWI, TBASE, CVS and CVL sensitivity parameters related to LAImax were optimized by time-series LAI data and particle swarm optimization (PSO) algorithm. And inputting them into the PyWOFOST model, using the EnKF algorithm and time-series LAI data to adjust the AMAXTB1, TDWI, TSUMEM, and CVO sensitivity parameters of TWSO to improve the accuracy of the singlepoint yield estimation. Compared with the site yield points, the R2, RMSE, MAE, and Bias of estimation were 0.8665, 468.64kg/hm2, 385.70kg/hm2 and 103.08, respectively, providing accurate site points yield of training data for establishing the RFR region yield estimation algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

馬戰(zhàn)林,文楓,周穎杰,魯春陽,薛華柱,李長春.基于作物生長模型與機器學(xué)習(xí)算法的區(qū)域冬小麥估產(chǎn)[J].農(nóng)業(yè)機械學(xué)報,2023,54(6):136-147. MA Zhanlin, WEN Feng, ZHOU Yingjie, LU Chunyang, XUE Huazhu, LI Changchun. Regional Winter-wheat Yield Estimation Based on Coupling of Machine Learning Algorithm and Crop Growth Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(6):136-147.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-21
  • 出版日期:
文章二維碼