ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于YOLO v5s和改進SORT算法的黑水虻幼蟲計數方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省自然科學基金項目(LY22F030003)


Larvae of Black Soldier Fly Counting Based on YOLO v5s Network and Improved SORT Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    目前農業(yè)環(huán)境下的無序目標的精確計數有很高的應用需求,這種計數對其生物量,、生物密度管理起到了重要的指導作用,。如黑水虻幼蟲目標追蹤過程中,追蹤對象具有高速和非線性的特征,,常規(guī)算法存在追蹤目標速度不足和丟失目標后的再識別困難等問題,。針對以上問題,本文提出了一種改進SORT算法,,通過改進卡爾曼濾波模型的方式提升目標追蹤算法的快速性和準確性,,提升了計數的精度。另外,,針對黑水虻幼蟲目標識別過程中幼蟲性狀的多樣性和混料導致的復雜背景問題,,本文通過實驗對比多種深度學習網絡性能選定YOLO v5s算法提取圖像多維度特征,提升了目標識別精度,。實驗結果表明:在劃線計數方面,,本文提出的改進SORT算法與原模型相比,平均精度從91.36%提升到95.55%,,提升4.19個百分點,,通過仿真和實際應用,證明了本文模型的有效性,;在目標識別方面,,使用YOLO v5s模型在訓練集上幀率為156f/s,[email protected]為99.10%,,精度為90.11%,,召回率為99.22%,綜合性能優(yōu)于其他網絡,。

    Abstract:

    There is a high application demand for accurate counting of disordered targets in agricultural environments, and such counting plays an important guiding role in their biomass and biological density management. In the process of larvae of black soldier fly target tracking, the tracking object has the characteristics of high speed and non-linearity, and the conventional algorithm has the problems of insufficient speed of tracking target and difficulty of re-identification after losing the target. To address these problems, an improved SORT algorithm was proposed, which improved the speed and accuracy of the target tracking algorithm by improving the Kalman filter model, and enhanced the counting accuracy. In addition, for the complex background problem caused by larval trait diversity and mixing in the process of black gadfly larval target recognition, the target recognition accuracy was improved by experimentally comparing the performance of multiple deep learning networks, which selected YOLO v5s algorithm to extract multidimensional features of images. The experimental results showed that in terms of delineation counting, the improved SORT algorithm improved the average accuracy by 4.19 percentage points compared with the original model, from 91.36% to 95.55%, and the effectiveness of the model was proved through simulation and practical application. In terms of target recognition, using the YOLO v5s model on the training set achieved a frame rate of 156f/s, [email protected] value of 99.10%, accuracy of 90.11%, and recall rate of 99.22%. Its overall performance was better than other networks.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙新龍,顧臻奇,李軍.基于YOLO v5s和改進SORT算法的黑水虻幼蟲計數方法[J].農業(yè)機械學報,2023,54(7):339-346. ZHAO Xinlong, GU Zhenqi, LI Jun. Larvae of Black Soldier Fly Counting Based on YOLO v5s Network and Improved SORT Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(7):339-346.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-12-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-07-10
  • 出版日期:
文章二維碼