ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于VINS-MONO和改進(jìn)YOLO v4-Tiny的果園自主尋筐方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2021YFD2000105)


Autonomous Basket Searching Method for Orchards Transporter Based on VINS-MONO and Improved YOLO v4-Tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    面向果園運(yùn)輸車果品采收自主運(yùn)輸作業(yè)場景,提出了一種基于VINS-MONO和改進(jìn)YOLO v4-Tiny的果園自主尋筐方法,。首先基于VINS-MONO視覺慣性里程計算法,,進(jìn)行果園運(yùn)輸車位置姿態(tài)的實時估計。然后基于改進(jìn)YOLO v4-Tiny目標(biāo)檢測算法,,根據(jù)圖像數(shù)據(jù)進(jìn)行果筐實時目標(biāo)檢測并獲取對應(yīng)深度信息,。其次根據(jù)運(yùn)輸車當(dāng)前位置姿態(tài)、果筐深度信息以及深度相機(jī)內(nèi)參,,進(jìn)行被識別果筐位置更新,。最后基于三次B樣條曲線擬合原理,以被識別果筐位置為控制點(diǎn),,進(jìn)行尋筐路徑實時擬合,,為果園運(yùn)輸車抵近果筐提供路線引導(dǎo)。試驗結(jié)果表明:改進(jìn)YOLO v4-Tiny果筐識別模型的平均識別精度為93.96%,,平均推理時間為14.7ms,,4m內(nèi)的果筐距離定位誤差小于4.02%,果筐角度定位誤差小于3°,,果園運(yùn)輸車實測平均行駛速度為3.3km/h,,果筐搜尋路線平均更新時間為0.092s,能夠在果樹行間和果園道路兩種作業(yè)環(huán)境下穩(wěn)定實現(xiàn)自主尋筐,。該方法能夠為果園運(yùn)輸車提供自主尋筐路徑引導(dǎo),,為其視覺導(dǎo)航提供研究參考。

    Abstract:

    A method for orchard autonomous basket searching based on VINS-MONO and improved YOLO v4-Tiny was proposed for the scenario of orchard transporter fruit harvesting and autonomous transportation operations. Firstly, the position of the orchard transporter was estimated in real time based on the VINS-MONO visual inertial odometry calculation method. Then based on the improved YOLO v4-Tiny target detection algorithm, real-time target detection of the fruit basket was performed on the image data, and its depth information was obtained. Nextly, the position of the identified fruit basket was estimated based on the current position pose of the transporter, the depth information of the fruit basket and the parameters of the depth camera. Finally, based on the principle of cubic B spline curve fitting, the path of the identified fruit basket was fitted in real time, using the position of the identified fruit basket as the control point, to provide route guidance for the autonomous fruit basket search of the orchard transporter. The test results showed that the average recognition accuracy of the improved YOLO v4-Tiny fruit basket recognition model was 93.96%, the average inference time was 14.7ms, the measurement error of the fruit basket distance within 4m was less than 4.02%, the measurement error of the fruit basket angle was less than 3°, the measured driving speed of the orchard transporter was 3.3km/h,the average update time of the fruit basket search route was 0.092s, and the transporter could stably achieve autonomous basket searching in two operating environments: fruit tree rows and orchard roads. This method could provide autonomous basket finding path guidance for orchard transporter and provide research reference for visual navigation of orchard transporter.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

朱立成,韓振浩,趙博,周利明,王瑞雪,靳晨.基于VINS-MONO和改進(jìn)YOLO v4-Tiny的果園自主尋筐方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(8):97-109. ZHU Licheng, HAN Zhenhao, ZHAO Bo, ZHOU Liming, WANG Ruixue, JIN Chen. Autonomous Basket Searching Method for Orchards Transporter Based on VINS-MONO and Improved YOLO v4-Tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):97-109.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-04-23
  • 出版日期:
文章二維碼