ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于無人機(jī)多光譜遙感的大豆生長參數(shù)和產(chǎn)量估算
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(52179045)


Soybean Growth Parameters and Yield Estimation Based on UAV Multispectral Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為適應(yīng)現(xiàn)代農(nóng)業(yè)發(fā)展對作物生長動態(tài),、連續(xù),、快速監(jiān)測的要求,本文基于無人機(jī)多光譜遙感技術(shù),,以西北地區(qū)大豆作為研究對象,,分別篩選出與大豆葉面積指數(shù)(Leaf area index,,LAI),、地上部生物量和產(chǎn)量相關(guān)性較好的5個植被指數(shù),采用支持向量機(jī)(Support vector machine,, SVM),、隨機(jī)森林(Random forest,RF)和反向神經(jīng)網(wǎng)絡(luò)(Back propagation neural network,,BPNN)分別構(gòu)建了大豆LAI,、地上部生物量和產(chǎn)量的估計模型,并對模型進(jìn)行了驗(yàn)證,。結(jié)果表明,,基于RF模型構(gòu)建的大豆LAI和地上部生物量預(yù)測模型的精度顯著高于SVM與BP模型,LAI估計模型驗(yàn)證集的R2為0.801,,RMSE為0.675m2/m2,,MRE為18.684%;地上部生物量估算模型驗(yàn)證集的R2為0.745,,RMSE為1548.140kg/hm2,,MRE為18.770。而在產(chǎn)量的估算模型構(gòu)建中,,在大豆開花期(R4)基于RF模型構(gòu)建的大豆產(chǎn)量預(yù)測模型的精度最高,,驗(yàn)證集的R2為0.818,RMSE為287.539kg/hm2,,MRE為7.128,。本研究結(jié)果可以為無人機(jī)多光譜遙感在作物監(jiān)測方面的應(yīng)用提供理論依據(jù),為作物產(chǎn)量的快速估算提供應(yīng)用參考,。

    Abstract:

    In order to meet the requirements of modern agriculture for dynamic, continuous, and rapid monitoring of crop growth, soybean was used as the research object based on UAV multispectral remote sensing technology in northwest China, and five vegetation indices were selected with the best correlation to soybean leaf area index (LAI), above-ground biomass and yield, and support vector machine (SVM), random forest (RF) and back propagation neural network (BPNN) were used to construct models for estimating soybean LAI, above-ground biomass and yield, respectively. RF and BPNN were used to construct and validate the models for estimating soybean LAI, aboveground biomass and yield, respectively. The results showed that the accuracy of soybean LAI and aboveground biomass prediction models constructed based on the RF model was significantly higher than that of SVM and BP models, with R2 of 0.801, RMSE of 0.675m2/m2, and MRE of 18.684% for the validation set of LAI estimation model; R2 of 0.745, RMSE of 1548.140kg/hm2, and MRE of 18.770. In the estimation model construction of yield, the soybean yield prediction model constructed based on RF model in soybean flowering period (R4) had the highest accuracy with R2 of 0.818, RMSE of 287.539kg/hm2 and MRE of 7.128 in the validation set. The research results can provide a theoretical basis for the application of UAV multispectral remote sensing in crop monitoring and provide a rapid estimation of crop yield application reference.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

向友珍,安嘉琪,趙笑,金琳,李志軍,張富倉.基于無人機(jī)多光譜遙感的大豆生長參數(shù)和產(chǎn)量估算[J].農(nóng)業(yè)機(jī)械學(xué)報,2023,54(8):230-239. XIANG Youzhen, AN Jiaqi, ZHAO Xiao, JIN Lin, LI Zhijun, ZHANG Fucang. Soybean Growth Parameters and Yield Estimation Based on UAV Multispectral Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):230-239.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-08
  • 出版日期:
文章二維碼