ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5s的輕量化植物識(shí)別模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

寧夏農(nóng)業(yè)高質(zhì)量發(fā)展和生態(tài)保護(hù)科技創(chuàng)新項(xiàng)目(NGSB-2021-14-05)、國(guó)家自然科學(xué)基金面上項(xiàng)目(61976107)和北方民族大學(xué)重點(diǎn)研究項(xiàng)目(2021JY005,、YCX22134)


Lightweight Plant Recognition Model Based on Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為方便調(diào)查寧夏全區(qū)荒漠草原植物種類及其分布,,需對(duì)植物識(shí)別方法進(jìn)行研究。針對(duì)YOLO v5s模型參數(shù)量大,,對(duì)復(fù)雜背景下的植物不易識(shí)別等問(wèn)題,,提出一種復(fù)雜背景下植物目標(biāo)識(shí)別輕量化模型YOLO v5s-CBD。改進(jìn)模型YOLO v5s-CBD在特征提取網(wǎng)絡(luò)中引入帶有Transformer模塊的主干網(wǎng)絡(luò)BoTNet(Bottleneck transformer network),,使卷積和自注意力相結(jié)合,,提高模型的感受野;同時(shí)在特征提取網(wǎng)絡(luò)融入坐標(biāo)注意力(Coordinate attention,CA),,有效捕獲通道和位置的關(guān)系,,提高模型的特征提取能力;引入SIoU函數(shù)計(jì)算回歸損失,,解決預(yù)測(cè)框與真實(shí)框不匹配問(wèn)題,;使用深度可分離卷積(Depthwise separable convolution,DSC)減小模型內(nèi)存占用量,。實(shí)驗(yàn)結(jié)果表明,,YOLO v5s-CBD模型在單塊Nvidia GTX A5000 GPU單幅圖像推理時(shí)間僅為8ms,模型內(nèi)存占用量為8.9MB,,精確率P為95.1%,,召回率R為92.9%,綜合評(píng)價(jià)指標(biāo)F1值為94.0%,,平均精度均值(mAP)為95.7%,,在VOC數(shù)據(jù)集平均精度均值可達(dá)80.09%。相比YOLO v3-tiny,、YOLO v4-tiny和YOLO v5s,,改進(jìn)模型內(nèi)存占用量減小,平均精度均值提升,。模型YOLO v5s-CBD在公開(kāi)數(shù)據(jù)集和寧夏荒漠草原植物數(shù)據(jù)集都有良好的魯棒性,,推理速度更快,,且易于部署,已應(yīng)用在寧夏荒漠草原移動(dòng)端植物圖像識(shí)別APP和定點(diǎn)生態(tài)信息觀測(cè)平臺(tái),,可用來(lái)調(diào)查寧夏全區(qū)荒漠草原植物種類和分布,,長(zhǎng)期觀測(cè)和跟蹤寧夏鹽池縣大水坑、黃記場(chǎng),、麻黃山等地植物生態(tài)信息,。

    Abstract:

    In ordered to facilitate the investigation of desert grassland plant species and their distribution in the whole Ningxia region, plant identification methods need to be studied. To address the problems of large number of parameters in YOLO v5s model, it is not easy to recognize plants in complex backgrounds, and a lightweight model of plant target recognition in complex backgrounds, YOLO v5s-CBD, was proposed. The improved model YOLO v5s-CBD introduced the BoTNet with Transformer module into the feature extraction network, to combine convolution and self-attention to improve the feeling field of the model. At the same time, coordinate attention was incorporated into the feature extraction network to effectively capture the relationship between channel and position and improve the feature extraction ability of the model. In terms of loss calculation, the SIoU function was introduced to calculate the regression loss to solve the problem of mismatch between the prediction box and the real box. Using depthwise separable convolution to reduce model volume. The experimental results showed that the model YOLO v5s-CBD infers a single image in only 8ms, a model volume of 8.9MB, a precision of 95.1%, a recall of 92.9%, a F1 value of 94.0%, and a mean average precision of 95.7% in a single Nvidia GTX A5000 GPU, and a mean average precision of 80.09% in the VOC dataset. Compared with YOLO v3-tiny, YOLO v4-tiny and YOLO v5s, the improved models reduced model volume and improved mean average precision. The model YOLO v5s-CBD had good robustness in both public dataset and Ningxia desert grassland plant dataset, faster inference speed and easy to deploy. It was applied in Ningxia desert grassland mobile plant image recognition APP and fixed ecological information observation platform, which can be used to investigate the species and distribution of desert grassland plants in the whole region of Ningxia, and long-term observation and tracking of Dashuikeng, Huangjichang, Mahuangshan and other places, Yanchi County, Ningxia.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬宏興,董凱兵,王英菲,魏淑花,黃文廣,茍建平.基于改進(jìn)YOLO v5s的輕量化植物識(shí)別模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(8):267-276. MA Hongxing, DONG Kaibing, WANG Yingfei, WEI Shuhua, HUANG Wenguang, GOU Jianping. Lightweight Plant Recognition Model Based on Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):267-276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-03-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-05-25
  • 出版日期:
文章二維碼