ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于Cow-DETR與深度圖像的非接觸式奶牛體質(zhì)量評(píng)估
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(32072788、31902210,、32002227),、國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFE0125600)、黑龍江省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2022ZX01A24)和財(cái)政部和農(nóng)業(yè)農(nóng)村部:國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS36)


Non-contact Predicting Method of Dairy Cow Weight Based on Cow-DETR and Deep Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)當(dāng)前牧場(chǎng)奶牛體質(zhì)量(體重)稱量效率低,,人工參與容易引發(fā)奶牛應(yīng)激等問題,,提出了一種基于改進(jìn)DETR(Detection transformer)網(wǎng)絡(luò)的端到端式奶牛體質(zhì)量評(píng)估方法(Cow-DETR),實(shí)現(xiàn)利用奶牛背部深度圖像進(jìn)行非接觸式奶牛體質(zhì)量評(píng)估,。首先設(shè)計(jì)并搭建實(shí)驗(yàn)數(shù)據(jù)采集裝置,,利用Intel RealSense D435深度相機(jī)和體重秤采集奶牛背部深度圖像和體質(zhì)量數(shù)據(jù);然后,,通過邊緣平滑濾波器和孔洞填充濾波器對(duì)深度圖像進(jìn)行補(bǔ)全處理,,減少深度數(shù)據(jù)缺失對(duì)體質(zhì)量評(píng)估的影響;最后,,以DETR網(wǎng)絡(luò)為基礎(chǔ)建立奶牛體質(zhì)量評(píng)估模型,,通過在預(yù)測(cè)模塊中添加含有交替全連接層的體質(zhì)量預(yù)測(cè)單元,提升奶牛體質(zhì)量相關(guān)的特征信息提取能力,,實(shí)現(xiàn)端到端式奶牛背部定位的同時(shí)進(jìn)行奶牛體質(zhì)量非接觸式評(píng)估,。結(jié)果表明,本文方法可以實(shí)現(xiàn)較高精度的奶牛體質(zhì)量評(píng)估,,通過5倍交叉驗(yàn)證,,在含有139頭奶牛數(shù)據(jù)的數(shù)據(jù)集中,平均絕對(duì)誤差不超過17.21kg,,平均相對(duì)誤差不超過3.71%,,單幅圖像平均識(shí)別時(shí)間為0.026s。通過與現(xiàn)有體質(zhì)量評(píng)估方法相對(duì)比,,本文方法比其他6種方法在更多的奶牛頭數(shù)的數(shù)據(jù)集中取得了更低的平均絕對(duì)誤差和平均相對(duì)誤差,,同時(shí)本文方法對(duì)奶牛站立姿勢(shì)要求較低,更符合牧場(chǎng)實(shí)際生產(chǎn)需要,為奶牛體質(zhì)量評(píng)估提供了新的解決思路,。

    Abstract:

    In order to solve the existence of some problems such as the low weighing efficiency of dairy cows in the current pasture, and being easy to cause the stress of dairy cows by manual participation, an end-to-end method of dairy cow weight estimation (Cow-DETR) based on improved detection transformer (DETR) network was proposed. The non-contact estimation on the dairy cow weight was carried out by using the depth image of dairy cow back. Firstly, a data acquisition device was designed and built, with which the cows back depth image and weight data were collected by using the Intel RealSense D435 depth camera and the weight scale. Then, deep image data was filled by using the edge flat filter and hole filling filter to reduce the impact of deep data loss on weight estimation. Finally, by adding the weight prediction unit with an alternate fully connection layer (AFC) to the prediction module of DETR to establish a cow weight estimation model. AFC was added to improve the ability of dairy cow weight-related feature extracting. It implemented the end-to-end dairy cow back positioning while performing a non-contact estimation of dairy cow weight by Cow-DETR model. The data of 139 cows were used to evaluate the model, and the results through 5-fold cross validation showed that the weight estimation method proposed can achieve a high accuracy in dairy cow weight estimation. The average absolute error of weight estimation was below 17.21kg, the average relative error was less than 3.71%. The average recognition time was 0.026s per image. Compared with the existing weight estimation methods, the results showed that Cow-DETR got lower average absolute error and average relative error than the other six methods in more dairy cow data. In the meantime, the method proposed had less requirements on the posture of dairy cow, which can more comply with the actual production demand of ranch and provide a solution for the weight estimation of dairy cow.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

沈維政,張哲,戴百生,王鑫杰,趙凱旋,李洋.基于Cow-DETR與深度圖像的非接觸式奶牛體質(zhì)量評(píng)估[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(8):277-285. SHEN Weizheng, ZHANG Zhe, DAI Baisheng, WANG Xinjie, ZHAO Kaixuan, LI Yang. Non-contact Predicting Method of Dairy Cow Weight Based on Cow-DETR and Deep Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):277-285.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-02-11
  • 出版日期:
文章二維碼