ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于1D CNN-GRU的日光溫室溫度預(yù)測(cè)模型研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020YFD1100602)和陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2021ZDLNY03-02)


Solar Greenhouse Temperature Prediction Model Based on 1D CNN-GRU
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    準(zhǔn)確預(yù)測(cè)日光溫室溫度是實(shí)現(xiàn)溫室高效調(diào)控的關(guān)鍵,對(duì)作物生長(zhǎng)發(fā)育具有重要意義,但因溫度具有時(shí)序性、非線性及多耦合性等特征,難以實(shí)現(xiàn)連續(xù)、精準(zhǔn)、長(zhǎng)時(shí)化預(yù)測(cè)。提出了一種基于1D CNN-GRU(One dimensional convolutional neural networks-gated recurrent unit)的日光溫室溫度預(yù)測(cè)模型,通過(guò)溫室內(nèi)外監(jiān)測(cè)平臺(tái)獲取內(nèi)外環(huán)境因子,以斯皮爾曼相關(guān)系數(shù)獲取相關(guān)性強(qiáng)特征,構(gòu)造特征與時(shí)間步長(zhǎng)的二維矩陣輸入網(wǎng)絡(luò)進(jìn)行溫度預(yù)測(cè),模型在測(cè)試集上預(yù)測(cè)1~4h后的決定系數(shù)為0.970~0.994,均方根誤差為0.612~1.358℃,平均絕對(duì)誤差為0.428~0.854℃,絕對(duì)值的最大絕對(duì)誤差為0.856~1.959℃。并在不同清晰度指數(shù)KT下進(jìn)行驗(yàn)證,結(jié)果表明,模型在KT≥0.5(晴)時(shí)預(yù)測(cè)效果最好,且在其他KT下模型相對(duì)誤差在10%以內(nèi),可以達(dá)到溫室生產(chǎn)所需的預(yù)測(cè)精度要求,為日光溫室精準(zhǔn)高效控溫提供了重要依據(jù)。

    Abstract:

    Accurate prediction of heliostat temperature was the key to achieve efficient greenhouse regulation, which was of great importance to crop growth and development, but it was difficult to achieve continuous and accurate prediction due to the characteristics of time series, nonlinearity and multi coupling of temperature. At the same time, the current production regulation of greenhouse mostly depended on the relevant experience of producers. This method had caused the lag of feedback control and affected the growth of crops.A temperature prediction model of solar greenhouse based on 1D CNN-GRU was proposed. The internal and external environmental factors were obtained through the monitoring platform inside and outside the greenhouse, and the strong correlation features and structural features were obtained by Spearman correlation coefficient and the two-dimensional matrix input network with time step, which was used for temperature prediction. The determination coefficient of the model after 1~4h prediction on the test set was 0.970~0.994, the root mean square error was 0.612~1.358℃, the average error was 0.428~0.854℃,and the maximum absolute error after the absolute value was 0.856~1.959℃. The model was verified under different KT and the results showed that the model had the best prediction effect when KT≥0.5(sunny), and the model also achieved ideal prediction accuracy under other KT, indicating that the model was universal and provided an important basis for accurate and efficient temperature control of solar greenhouse.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡瑾,雷文曄,盧有琦,魏子朝,劉行行,高茂盛.基于1D CNN-GRU的日光溫室溫度預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(8):339-346. HU Jin, LEI Wenye, LU Youqi, WEI Zichao, LIU Hangxing, GAO Maosheng. Solar Greenhouse Temperature Prediction Model Based on 1D CNN-GRU[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(8):339-346.

復(fù)制
相關(guān)視頻

分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-12-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-02-10
  • 出版日期:
文章二維碼