ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于SSA-RFR算法的采棉機測產(chǎn)傳感器研究
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國機械工業(yè)集團有限公司重大科技專項(ZDZX2020-2)


Yield Sensor of Cotton Picker Based on SSA-RFR Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著棉花種植和收獲的機械化程度提高,獲取準確的產(chǎn)量圖,分析田間產(chǎn)量數(shù)據(jù),,變得尤為重要,,而采棉機作業(yè)時在輸棉管道處監(jiān)測產(chǎn)量是一種有效、可行的方法?,F(xiàn)有光電對射式棉花測產(chǎn)傳感器在作業(yè)中會有粘液遮擋檢測通道,、環(huán)境光影響等問題,面對復(fù)雜的田間作業(yè)環(huán)境,,傳感器標定普遍采用線性或多項式模型,,精度和抗干擾性表現(xiàn)不夠理想,。針對上述現(xiàn)狀,,本文首先在傳感器的結(jié)構(gòu)和電路設(shè)計上做了抗干擾改進。然后在傳感器標定過程中,,嘗試使用隨機森林回歸模型(Random forest regression,,RFR),對實驗樣本進行訓(xùn)練,、測試,。在分析模型的表現(xiàn)后,提出了麻雀算法(Sparrow search algorithm, SSA)改進的隨機森林回歸模型,,以均方誤差作為適應(yīng)度,,對模型進行優(yōu)化。經(jīng)過驗證,,在相同驗證集下,,優(yōu)化后的模型有更好的檢測精確度。通過研究尋優(yōu)上下界范圍,,平衡運行時間和檢測精度,,得到最優(yōu)檢測模型。該模型在驗證集上表現(xiàn)良好,,決定系數(shù)R2為0.99,,平均絕對百分比誤差(MAPE)為6.34%。臺架實驗結(jié)果表明,,不同風(fēng)速下最大誤差為9.21%,,平均誤差為8.33%,改進后的傳感器及檢測模型性能良好,,能夠較準確檢測采棉機作業(yè)時棉花產(chǎn)量,。

    Abstract:

    With the increase of mechanization of cotton planting and harvesting, it is particularly important to obtain accurate yield map and analyze field yield data, and it is an effective and feasible method to monitor the yield at the cotton conveying pipeline during the operation of cotton picker. The existing photoelectric beam cotton yield measurement sensor has problems such as mucus blocking detection channel and ambient light influence in operation. Facing the complex field working environment, linear or polynomial model is generally used for sensor calibration, and the accuracy and anti-interference performance are not ideal. In view of the above situation, the anti-interference in the structure and circuit design of the sensor was firstly improved. Then, in the process of sensor calibration, random forest regression (RFR) was used to train and test the experimental samples. After analyzing the performance of the model, a stochastic forest regression model based on sparrow search algorithm (SSA) was proposed. The mean square error was used as fitness value to optimize the model. After verification, the optimized model had better detection accuracy under the same verification set. The optimal detection model was obtained by optimizing the range of upper and lower bounds, balancing the running time and detection accuracy. The model performed well on the validation set with a coefficient of determination (R2) of 0.99 and a mean absolute percentage error (MAPE) of 6.34%. The bench test results showed that the maximum error was 9.21% and the average error was 8.33% at different wind speeds. The improved sensor and detection model had good performance and can accurately detect the cotton quality during the operation of the cotton picker.

    參考文獻
    相似文獻
    引證文獻
引用本文

偉利國,馬若飛,周利明,隗立昂,劉陽春,趙博.基于SSA-RFR算法的采棉機測產(chǎn)傳感器研究[J].農(nóng)業(yè)機械學(xué)報,2023,54(9):154-163. WEI Liguo, MA Ruofei, ZHOU Liming, WEI Li’ang, LIU Yangchun, ZHAO Bo. Yield Sensor of Cotton Picker Based on SSA-RFR Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):154-163.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼