ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于最大熵原理的噴霧液滴粒徑分布預(yù)測(cè)研究
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(52279065)


Prediction of Spray Droplet Size Distribution Based on Maximum Entropy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    液滴粒徑分布是噴霧過(guò)程質(zhì)量,、動(dòng)量和能量輸運(yùn)的關(guān)鍵參數(shù),,為確定噴霧中液滴粒徑的分布,,基于最大熵原理,通過(guò)平均直徑約束條件,,構(gòu)建霧滴粒徑數(shù)量概率密度分布的最大熵模型,,應(yīng)用環(huán)形鼓風(fēng)噴嘴霧化的實(shí)驗(yàn)數(shù)據(jù)對(duì)液滴粒徑分布模型進(jìn)行優(yōu)選。結(jié)果表明,,構(gòu)建的三參數(shù)和四參數(shù)最大熵模型的預(yù)測(cè)結(jié)果最為理想,,預(yù)測(cè)的液滴粒徑分布與實(shí)驗(yàn)值的相關(guān)系數(shù)均高于0.96,均方根誤差均低于0.135,。通過(guò)對(duì)比三參數(shù)和四參數(shù)最大熵模型預(yù)測(cè)結(jié)果的赤池信息準(zhǔn)則數(shù),,表明三參數(shù)最大熵模型更適合噴霧液滴粒徑分布的預(yù)測(cè),應(yīng)用不同類型噴嘴的霧化液滴粒徑分布實(shí)驗(yàn)數(shù)據(jù)對(duì)三參數(shù)最大熵模型的適用性進(jìn)行檢驗(yàn),,結(jié)果表明模型的預(yù)測(cè)值與實(shí)驗(yàn)值吻合較好,。最后將優(yōu)選的三參數(shù)最大熵模型應(yīng)用到Pratt & Whitney Canada公司制造的壓力噴嘴噴霧液滴的粒徑分布預(yù)測(cè)研究中。研究表明,,構(gòu)建的三參數(shù)最大熵模型,,預(yù)測(cè)結(jié)果與實(shí)驗(yàn)數(shù)據(jù)基本吻合。

    Abstract:

    The spray process relies heavily on the droplet size distribution, which plays a crucial role in mass, momentum and energy transport. Currently, determining the droplet size distribution is a major scientific problem, which is represented by distribution functions classified into empirical and theoretical distribution methods. Empirical methods which derive droplet size distribution formulae from statistical analysis of experimental data lack practical physical significance and rely too heavily on empirical data. In contrast, theoretical approaches mainly use the maximum entropy approach, which originates from physical conservation laws but faces challenges in accurately predicting the droplet size distribution under complex conditions. To address these challenges, a maximum entropy model of droplet size distribution was proposed based on the maximum entropy principle, with an average diameter constraint condition used for constructing three and four-parameter maximum entropy models. The optimal model was selected based on the comparison of Akaike information criterion numbers, and the three-parameter maximum entropy model using the average diameter was found to be the best in predicting droplet number distribution. Air-blast nozzle atomization experimental data were used to optimize the proposed model, and the results showed that the correlation coefficient between predicted and experimental droplet number differential distribution values was above 0.96, with a mean square error lower than 0.135. Moreover, the three-parameter maximum entropy model accurately predicted the number and distribution of spray droplets. The proposed model was also tested against experimental data on atomized droplet size distribution from different nozzle types, yielding a good match with the experimental data. Finally, the selected model was applied to predict the particle size distribution of spray droplets from pressure nozzles manufactured by Pratt & Whitney Canada, demonstrating its accuracy in predicting the spray droplet size and quantity distribution despite the complexity of the working conditions. In conclusion, the research result can provide a significant contribution to accurately predicting droplet size distribution and quantity, and the proposed three-parameter maximum entropy model had great potential in improving spray droplet size and quantity distribution prediction accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

彭燕祥,張華,何貴成.基于最大熵原理的噴霧液滴粒徑分布預(yù)測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(9):217-226. PENG Yanxiang, ZHANG Hua, HE Guicheng. Prediction of Spray Droplet Size Distribution Based on Maximum Entropy[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):217-226.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-02-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼