ass日本风韵熟妇pics男人扒开女人屁屁桶到爽|扒开胸露出奶头亲吻视频|邻居少妇的诱惑|人人妻在线播放|日日摸夜夜摸狠狠摸婷婷|制服 丝袜 人妻|激情熟妇中文字幕|看黄色欧美特一级|日本av人妻系列|高潮对白av,丰满岳妇乱熟妇之荡,日本丰满熟妇乱又伦,日韩欧美一区二区三区在线

基于改進(jìn)YOLO v5s的馬鈴薯種薯芽眼檢測方法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省薯類產(chǎn)業(yè)技術(shù)體系農(nóng)業(yè)機械崗位專家項目(SDAIT-16-10)和中國博士后科學(xué)基金項目(2020M681690)


Detection Method of Potato Seed Bud Eye Based on Improved YOLO v5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    芽眼檢測是馬鈴薯種薯智能切塊首先要解決的問題,為實現(xiàn)種薯芽眼精準(zhǔn)高效檢測,,提出了一種基于改進(jìn)YOLO v5s的馬鈴薯種薯芽眼檢測方法,。首先通過加入CBAM注意力機制,加強對馬鈴薯種薯芽眼圖像的特征學(xué)習(xí)和特征提取,,同時弱化與芽眼相似的馬鈴薯種薯表面背景對檢測結(jié)果的影響,。其次引入加權(quán)雙向特征金字塔BiFPN增加經(jīng)骨干網(wǎng)絡(luò)提取的種薯芽眼原始信息,為不同尺度特征圖賦予不同權(quán)重,,使得多尺度特征融合更加合理,。最后替換為改進(jìn)的高效解耦頭Decoupled Head區(qū)分回歸和分類,加快模型收斂速度,,進(jìn)一步提升馬鈴薯種薯芽眼檢測性能,。試驗結(jié)果表明,改進(jìn)YOLO v5s模型準(zhǔn)確率,、召回率和平均精度均值分別為93.3%,、93.4%和95.2%,;相比原始YOLO v5s模型,平均精度均值提高3.2個百分點,,準(zhǔn)確率,、召回率分別提高0.9、1.7個百分點,;不同模型對比分析表明,,改進(jìn)YOLO v5s模型與Faster R-CNN、YOLO v3,、YOLO v6,、YOLOX和YOLO v7等模型相比有著較大優(yōu)勢,平均精度均值分別提高8.4,、3.1,、9.0、12.9,、4.4個百分點,。在種薯自動切塊芽眼檢測試驗中,改進(jìn)YOLO v5s模型平均召回率為91.5%,,相比原始YOLO v5s模型提高17.5個百分點,。本文方法可為研制馬鈴薯種薯智能切塊芽眼識別裝置提供技術(shù)支持。

    Abstract:

    The first problem to be solved in potato cutting fast is the detection of potato seed bud eyes, an improved YOLO v5s-based potato seed bud eye detection method was proposed to improve seed potato eye detection performance. Firstly, by adding the CBAM attention mechanism, the feature learning and feature extraction of the potato bud eye images were strengthened. The influence of the potato surface background similar to the bud eyes on the detection results was weakened. Secondly, the weighted bidirectional feature pyramid BiFPN was introduced to increase the original information of bud eyes extracted by the backbone network and assign weights to feature maps of different scales, making multi-scale feature fusion more reasonable. Finally, it was replaced with an improved and efficient Decoupled Head to distinguish between regression and classification, speed up the convergence speed of the model, and further improve the performance of potato bud eye detection. The test results showed that the precision, recall rate, and average precision of the improved algorithm were 93.3%, 93.4% and 95.2%, respectively, which was 3.2 percentage points higher than that of the original algorithm in the mean average precision, and the precision and recall rate were improved by 0.9 and 1.7 percentage points. The comparative analysis of different algorithms showed that this algorithm had absolute advantages compared with Faster R-CNN, YOLO v3, YOLO v6,YOLOX and YOLO v7 algorithms. The mAP was increased by 8.4 percentage points, 3.1 percentage points, 9.0 percentage points,,12.9 percentage points and 4.4 percentage points. In the actual detection application, the average recall rate of the improved algorithm was 91.5%, which was 17.5 percentage points higher than that of the original algorithm, and the missed detection rate was reduced. The method can provide technical support for the next step in the development of a sprout-eye identification device for the intelligent cutting of potato seed potatoes.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張萬枝,曾祥,劉樹峰,穆桂脂,張弘毅,郭壯壯.基于改進(jìn)YOLO v5s的馬鈴薯種薯芽眼檢測方法[J].農(nóng)業(yè)機械學(xué)報,2023,54(9):260-269. ZHANG Wanzhi, ZENG Xiang, LIU Shufeng, MU Guizhi, ZHANG Hongyi, GUO Zhuangzhuang. Detection Method of Potato Seed Bud Eye Based on Improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery,2023,54(9):260-269.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2023-09-10
  • 出版日期:
文章二維碼